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• Quasilocal first law using test particles

a Using that the spacetime geometry and maxwell fields representing the most general (physically relevant)
stationary BH solution—the Kerr-Newman solution (see R.M. Wald GR, page 313) has killing fields ξ
(stationarity) and ψ (axy-symmetry); therefore

Lξgab = Lψgab = 0 (1)

LξAa = LψAa = 0 (2)

Show that the following two quantities are conserved along the trajectory of a unit mass test particle and
charge q with four-velocity wa

E = −(ξawa + qξaAa) (3)

L = −(ψawa + qψaAa) (4)

Show that these can be interpreted as total energy per unit mass and axial component of angular momentum
for certain inertial observers placed at infinity (which ones?).

b Show that the local surface gravity κ̄ = κ/(||χ||) defined for the special family of local observers previ-
ously introduced is universal in the leading order for proper distance ℓ ≪ 1 (i.e. independent of the BH
parameters); more precisely show that

κ̄ =
1

ℓ
(1 + curvature corrections) (5)

Interpret in terms of Rindler geometry. In what limit can one say that the near horizon geometry is
Rindler?

c With the above ingredients reproduce the argument leading to the local first law and the local energy
formula, given in the previous pages, in all detail.

d The quasi-local energy and the Komar-like energy formula. Show that the local energy can be written in
terms of the Komar like integral

E = − 1

8π

∫

H

ǫabcd∇cud (6)

where ua is the four velocity of the local stationary observers defined in previous pages.

• Quasilocal first law using fields and Einsteins equations

a Define the energy momentum current Ja = Tabχ
b and show that it is conserved, where Tab = T (0)

ab +δTab (i.e.
a background term plus a perturbation representing a small amount of matter infalling into and otherwise
stationary Kerr-Newman black hole).

b Recalling that at the horizon the Killing generator χ satisfies χa∇aχb = κχb (where κ is the surface
gravity), and that the Killing generator vanishes at the bifurcate horizon, show that there exist an affine
generator ka (i.e. ka∇akb = 0 ) such that

χa = κV ka, (7)

with V the affine parameter associated to ka and singled out by the property that V = 0 at the bifrcate
horizon.
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c Gauss law is subtle when applied to null surfaces (see Wald GR pages 432-434). Show that the flux of Ja

across the horizon takes the form

Fhorizon =

∫

H

dV dS2Tabχ
akb (8)

where V is the affine parameter of point (b), and dS2 is the area element of the spheres V = constant.

d Use Gauss law in the region limited by the horizon and the world-sheet of local observers (see previous
slide) combined with Raychaudhuri equation (Wald 9.2.32) and Einsteins equations to prove the quasilocal
first law

δE =
κ̄

8π
δA. (9)

HINT: use the correct boundary condition for the expansion of ka at V = ∞.

e Notice that the derivation of the local first law does not need the normalization of the Killing field χ at
infinity. Therefore, the local first law is valid in a more general context than asymptotically flat spacetimes.
Indeed no asymptotic conditions are necessary for its validity due to its intrinsically quasilocal nature.

• Quantum geometry

a Show that

ΣiδΓi = d(ei ∧ δei), (10)

where Γi is the spin connection satisfying first Cartan structure equation

dei + ǫijkΓj ∧ ek (11)

b From the differential equation defining holonomies (see notes of the second lecture) prove the following
properties of holonomies.

i) The holonomy associated to an oriented path is independent of its parametrization.

ii) The holonomy along the product of two oriented paths that can be multiplied is the suitable product
of holonomies.

iii) Under a gauge transformation the holonomy he along the path e is mapped to gtheg
−1
s where gt is

the value of the gauge transformation at the target of the path and gs is the value of the gauge
transformation at the source.

iv) Let φ :M →M be a diffeomorphism then

hφ(e)[A] = he[φ
∗A] (12)

• BH entropy

a In this exercise we will compute BH entropy in the simplest LQG scenario. We assume punctures of the
horizon (area quantum excitations) are distinguishable. In the microcanonical ensemble we must count
how many states there are such that the following constraint is satisfied (according to the form of the area
spectrum in LQG)

C1 :
∑

j

√

j(j + 1) sj =
A

8πℓ2g
, (13)

Ignoring global constraints (due to Chern-Simons formulation) show that the number of states d[{sj}]
associated with a configuration {sj} (where sj denotes the number of punctures with spin j) is

d[{sj}] =
(

∑

k

sk

)

!
∏

j

(2j + 1)sj

sj !
. (14)

b Look for the configuration that maximizes the entropy log(d[{sj}]) subject to the above constraint.
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c Show that—using Stirling’s approximation—the dominant configuration

sj
N

= (2j + 1)e−λ
√
j(j+1), (15)

where is a solution of

1 =
∑

j

(2j + 1)e−λ
√
j(j+1). (16)

d Show that the entropy (defined as the value of log(d[{sj}]) on the dominant configuration) is

S =
γ0
γ

A

4ℓ2p
(17)

where γ0 = λ/(2π).

e Show that the previous result is in conflict with the local first law (and hence with the usual first law)
unless γ = γ0.

f Redo the exercise by imposing an additional constraint

C2 :
∑

j

sj = N.

and show by computing S(A,N) that the conflict with the first law disappears and all values of γ are
allowed. Obtain an expression of the entropy as a function of the area alone using the equation of state.


