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Motivations

• The role of MHD turbulence in several phenomena in space and solar physics (plas-
mas) → stars, Sun, solar corona, solar wind, interstellar space, magnetospheres,
Earth interior

• Coronal heating → magnetic loops

• Coronal heating → coronal holes, solar wind acceleration (origin)

• Particle acceleration by turbulence

• Waves and turbulence: coexist ?

• Low-frequency fluctuations → 1/f noise, magnetic field reversals



Basic structure of the Sun and the corona

Tcore ∼ 14 106K

Tradiative ∼ 105K

Tphotosphere ∼ 6 103K

Tcorona ∼ 2 106K



Corona: external layer of Sun, atmosphere (heliosphere), from solar surface into inter-
planetary space. Plasma, electrons and ions gas, in motion, electric currents and
magnetic fields.
Corona emits radiation, however its emision in the visible range is small as compared to
the solar surface.

Corona in white light (in an eclipse)



Corona in UV (TRACE)



Magnetic loops

loops

Very structured magnetic field, in a broad range of length scales.



Magnetic loop: simple model
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Photosphere granulation (movements in the loop footpoints)



Velocity at the loop footpoints

lp ∼ 1000 km

tp ∼ 1000 s
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MagnetoHydroDynamics

Macroscopic description of a plasma: flows + electric currents

Fluid equations (Navier-Stokes) + Electrodynamics (Maxwell eqs, Ohm’s law)

u = u(x, y, z, t) = plasma velocity

B = B(x, y, z, t) = magnetic field

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ J×B + ρν∇2u

∂B

∂t
= ∇× (u×B) + η∇2B

J = ∇×B = current density, ∇ ·B = 0 , ∇ · u = 0
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Energy transfer from large to small scales, which enhances dissipative processes and
mixing: turbulent cascade.

u =
∑
k

ukei k·r , B =
∑
k

Bkei k·r

non− linear terms : u · ∇u , J×B , ∇× (u×B)→ mode−mode coupling



Turbulence

Energy transfer from large to small scales, which enhances dissipative processes and
mixing: turbulent cascade.

u =
∑
k

ukei k·r , B =
∑
k

Bkei k·r

non− linear terms : u · ∇u , J×B , ∇× (u×B)→ mode−mode coupling

Involves convolution sums

∂uk

∂t
∼

∑
k′+k′′=k

(uk′ · ik′′)uk′′

with coupling triads
k = k′ + k′′

k’

k’’
k



k

-5/3

large scales small scales

inertial range

 Turbulence transfers energy
from large to small scales

energy input dissipation

energy cascade

η j2
,

| |

ν w 2

E(|k|)

E(k) ~ k

TURBULENT CASCADE

k ∼ 1

l
, large k → small l If l small enough→ tdiss ∼ hs
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Reynolds number: turbulence

Rl ∼
non− linear

dissipative
∼ (u · ∇)u

ν∇2u
∼ ul l

ν

In the corona, Rl ∼ 1010−13 >> 1→ turbulence
Kolmogorov: dissipation rate ∼ injection rate ∼ transfer rate ∼ ε (independent of ν, η)

→ ul ∼ ε1/3l1/3

ld = l for which non-linear term ∼ dissipative term, that is Rld ∼ 1

→ ld ∼
ν

uld

∼ ν3/4

ε1/4

→ l

ld
∼ R3/4

If R ∼ 1010 → l >> ld (several orders of magnitude)

Number of modes ∼ R9/4 ∼ 1023 !!

We use pseudospectral method codes to accurately solve (through Direct Numerical
Simulations) the MHD equations.



3D MHD turbulence Direct Numerical Simulation

B
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pared to magnetic field fluctuations b, that is B = B0 + b, B0 >> b, → anisotropy.

For instance, in the induction equation the non-linear term is of the form

(B · ∇)u = B0∇‖u + (b · ∇)u

In k-space,
k‖ B0 bk + k⊥ bk bk

The first term is a “wave-like” term, the second term is a non-linear term. Non-linearities
dominate for wave vectors for which

k⊥bk ' k‖B0

(the equal corresponds to the so-called “critical balance”).

For large B0 >> bk this means k‖ << k⊥, so ∇‖ << ∇⊥.



Another way of looking at this is recalling mode-mode couplings imply wavenumber
triad interactions

k = k′ + k′′

But if we think on term of interacting Alfven waves (which we will see later have to be
of opposite travelling direction), with e−iwt time dependence, we also must have

±w(k) = w(k′)− w(k′′)

where the dispersion relation for Alven waves is

w(k) = k ·B0 = k‖B0



Another way of looking at this is recalling mode-mode couplings imply wavenumber
triad interactions

k = k′ + k′′

But if we think on term of interacting Alfven waves (which we will see later have to be
of opposite travelling direction), with e−iwt time dependence, we also must have

±w(k) = w(k′)− w(k′′)

where the dispersion relation for Alven waves is

w(k) = k ·B0 = k‖B0

This imply that one of either k′ or k′′ have zero parallel component along the background
magnetic field direction and so the k-parallel component of k can not increase. In other
words, the (energy) transfer in the k-parallel direction is “inhibited”.

Bo

Energy transfer (k−space)

k’

k’’

k
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B = B0 ẑ + b(x, y, z, t), B0 >> b

b = b⊥(x, y, z, t), u = u⊥(x, y, z, t) and ∂z << ∂x,y

and we also eliminate fast ∂t variations (acoustic waves)

We can put
b⊥ = ∇⊥a(x, y, z, t)× ẑ = ∂ya x̂− ∂xa ŷ

u⊥ = ∇⊥ψ(x, y, z, t)× ẑ = ∂yψ x̂− ∂xψ ŷ

with a(x, y, z, t) and ψ(x, y, z, t) scalar potentials.

The 3D MHD equations become:

∂ta = B0∂zψ + [ψ, a] + η∇2
⊥a

∂tω = B0∂j + [ψ,w]− [a, j] + ν∇2
⊥ω

with j = Jz the current density, ω = ωz the vorticity, and [ψ, a] = ∂xψ∂ya− ∂yψ∂xa.



There is a clear numerical advantage on using RMHD equations vs the full 3D equations
(for instance, we can increase the resolution in the perpendicular directions vs the parallel
direction).
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Current density inside a magnetic loop (numerical simulation)



Current density and perpendicular magnetic field in a cross
section of the magnetic loop

moviehd



Energy spectrum
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Consistent with Kolmogorov spectrum.



Energy spectrum depends on tA/tp (not universal)
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dissipation rate

tA = L‖/vA = Alfven time, ≈ 20 s (vA = B0/
√

4πρ=Alfven velocity)

dissipation rate consistent with observational value 107 erg/cm2/s

Initial transient 50 tA ≈ 1000 s
Fluctuations timescale 10 tA ≈ 200 s



Scaling law

ε ∼
l2p
t3A

(
tA
tp

)q

, q ≈ 3

2



Statistics of dissipation events (nanoflares)

∆E ∼ 1024 erg



N(E) ∼ E−1.5

Self-organized criticality (SOC)


