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analogy with thermodynamics
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Black Hole Thermodynamics
The 0th, 1st, 2nd and 3rd laws of BH

stationary
state (1)
M, J, Q

stationary 
state (2)
M �, J �, Q� 0th law: the surface gravity κ

is constant on the horizon.

1st law:
δM = κ

8π δA + ΩδJ + ΦδQ� �� �
work terms

2nd law:
δA ≥ 0

3rd law: the surface gravity value κ = 0

(extremal BH) cannot be reached by any

physical process.

Ω ≡ horizon angular velocity
κ ≡surface gravity (‘grav. force’ at horizon)
If �a =killing generator, then �a∇a�b = κ�b.

Φ ≡electromagnetic potential.

�
Some definitions



Back to the 1st law
The first law is a global relationship

δM =
κ

8π
δA + Ω δJ + Φ δQ,

F∞ = m κF�oc = m κ̄

Φ = Potential difference from the horizon to infinity.

Ω = Angular velocity of non rotating observers as seen from infinity.

Q = Total electric charge.

J = Total angular momentum.



Hawking Radiation
Black holes are thermal 



Particle creation by collapsing spacetime
The Hawking effect
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Black Hole Thermodynamics
Hawking Radiation: QFT on a BH background 

Out state: thermal flux of particles 
as we approach the point i+

In state: vacuum far 
from i-

T∞ =
κ

2π

Temperature at infinity

From the first law
δM =

κ

8π
δA + ΩδJ + ΦδQ

One infers the 
ENTROPY

S =
A

4�2p

(2)



Black Hole Thermodynamics
Hawking Radiation: QFT on a BH background 

Out state: thermal flux of particles 
as we approach the point i+

T∞ =
κ

2π

Temperature at infinity

From the first law
δM =

κ

8π
δA + ΩδJ + ΦδQ

One infers the 
ENTROPY

S =
A

4�2p

(2)

Central Question for 
QG: how to get S from 
statistical mechanics



Black holes evaporate
Hard Problem: fate of information, unitarity, singularity, 
etc... 

Simpler problem: The problem of BH thermodynamics 
(large BHs close to equilibrium)



Black Hole entropy in LQG 
The standard definition of BH is GLOBAL

(need a quasi-local definition) 

?

LQG Paradigm:
Ashtekar-Bojowald (2005), 

Ashtekar-Taveras-Varadarajan (2008), 
Ashtekar-Pretorius-Ramazanoglu (2011). 

Usual old paradigm



Let us consider the simpler 
problem: Understanding 

BH thermodynamics

An observation on Hawking computation



Particle creation by collapsing spacetime
The relevant physics is Near-Horizon 

horizon physics



The horizon is the 
thermodynamical system; 

we need:
(1) A local definition of horizon in equilibrium

(2) A local version of BH thermodynamics



Black Hole Entropy from LQG
The Characteristic formulation of GR  

D(M)

ioMFree
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Black Hole Entropy from LQG
Definition of (spherical) Isolated 

Horizon**  

Free data

ioM 1

2

Schw
arz

shi
ld 

dat
a

M

rad
iat

ion

** A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Phys. Rev. Lett. 80 (1998) 904.
J. Lewandowski, Class. Quant. Grav. 17 (2000) L53. A. Ashtekar, S. Fairhurst
and B. Krishnan, Phys. Rev. D62 (2000) 104025. J. Engle, Th., Penn State
(2006)



Generic (non-rotating) Isolated Horizons
Covariant phase space formulation  

o

Free data

M 1

2

IH
 bo

un
dar

y c
on

dit
ion

irad
iat

ion

M
S[e, A+] = − i

κ

�

M
Σi(e) ∧ F i(A+) +

i

κ

�

τ∞

Σi(e) ∧Ai
+

0 =
iκ

2

�

∂B
J(δ1, δ2) =

�

∆
δ[1Σi ∧ δ2]A

i
+

� �� �
+

�

M1

δ[1Σi ∧ δ2]A
i
+ −

�

M2

δ[1Σi ∧ δ2]A
i
+

[Ashtekar, PRL, 1986]

� �� �
a

2π

�

H2

δ1Ai ∧ δ2A
i − a

2π

�

H1

δ1Ai ∧ δ2A
i

Fab
i(A) = −2π

a
Σab

iSoldering Constraint:  generating 
diffeomorphism and gauge 

transformations on the boundary
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i − a

2π

�

H1

δ1Ai ∧ δ2A
i

Ω(δ1, δ2) =
1

8πGγ

�

M

2δ[1Σi ∧ δ2]Ai

� �� �
+

a

8π2Gγ(1− γ2)

�

H

δ1Ai ∧ δ2A
i

� �� �



• Quantum geometry

a Show that
ΣiδΓi = d(ei ∧ δei), (1)

where Γi is the spin connection satisfying first Cartan structure equa-
tion

dei + �ijkΓj ∧ ek (2)

b From the differential equation defining holonomies (see notes of the
second lecture) prove the following properties of holonomies.

i) The holonomy associated to an oriented path is independent of
its parametrization.

ii) The holonomy along the product of two oriented paths that can
be multiplied is the suitable product of holonomies.

iii) Under a gauge transformation the holonomy he along the path e
is mapped to gtheg−1

s where gt is the value of the gauge transfor-
mation at the target of the path and gs is the value of the gauge
transformation at the source.

iv) Let φ : M → M be a diffeomorphism then

hφ(e)[A] = he[φ
∗A] (3)



We need:
(1) A local definition of horizon in equilibrium

(2) A local version of BH thermodynamics



The local laws of BH 
mechanics

BH thermodynamics from a local perspective
[Frodden, Ghosh, Perez, 2012 PRD]



Black Hole Thermodynamics
A local perspective

H

χ = ξ + Ω ψ = ∂t + Ω ∂φ

ua =
χa

�χ�

Introduce a family of 
local stationary observers

~ZAMOS 
H

WO

Singularity

�2 << A
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A local perspective

H

χ = ξ + Ω ψ = ∂t + Ω ∂φ

ua =
χa

�χ�

Introduce a family of 
local stationary observers

~ZAMOS 

H

WO

Singularity

�2 << A

χ

a = ||ua∇aub|| =
1
�



A thought experiment
throwing a test particle from infinity

Particle’s equation of motion

Conserved quantities

wa

ua

wa∇awb = q Fbcw
c

Symmetries of the background

Lξgab = Lψgab = LξAa = LψAa = 0

E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



A thought experiment
throwing a test particle from infinity

Particle at infinity

wa

ua

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂
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+ Ω

∂
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A thought experiment
Throwing a test particle from infinity

wa

ua

At the local observer

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E�oc ≡ −waua ≡ local energy

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen from infinity

wa

ua

The BH readjusts parameters 

δM = E δJ = L

δQ = q

The area change from 1st law 

δM =
κ

8π
δA + ΩδJ + ΦδQ

κ

8π
δA = E − ΩL− Φq

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen by a local observer

wa

ua

At the local observer

E�oc ≡ −waua ≡ local energy

κ

8π
δA = E − ΩL− Φq

χ = ξ + Ω ψ = ∂t + Ω ∂φ ua =
χa

�χ�

E�oc = −waξa + Ωwaψa

�χ�

E�oc =
E − ΩL− qΦ

�χ�
�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen by a local observer

κ

8π
δA = E − ΩL− Φq

E�oc =
E − ΩL− qΦ

�χ�

Eloc =
κ

8π�χ�δA

κ ≡ κ

�χ�

Eloc =
κ

8π
δA

H

wa

δE = E�oc

The appropriate local energy notion
must be the one such that:

δE =
κ

8π
δA



Local first law
Main classical result

H

wa

δE =
κ

8π
δA κ ≡ κ

||χ|| =
1
�

+ o(�)

�2 << A

δM =
κ

8π
δA + Ω δJ + Φ δQ,

a = ||ua∇aub|| =
1
�

E =
A

8π�



Local first law
Main classical result

H

wa

δE =
κ

8π
δA κ ≡ κ

||χ|| =
1
�

+ o(�)

�2 << A

δM =
κ

8π
δA + Ω δJ + Φ δQ,

a = ||ua∇aub|| =
1
�

E =
A

8π�



• Quasilocal first law using test particles

a Using that the spacetime geometry and maxwell fields representing

the most general (physically relevant) stationary BH solution—the

Kerr-Newman solution (see R.M. Wald GR, page 313) has killing

fields ξ (stationarity) and ψ (axy-symmetry); therefore

Lξgab = Lψgab = 0 (1)

LξAa = LψAa = 0 (2)

Show that the following two quantities are conserved along the tra-

jectory of a unit mass test particle and charge q with four-velocity

wa

E = −(ξawa + qξaAa) (3)

L = −(ψawa + qψaAa) (4)

Show that these can be interpreted as total energy per unit mass and

axial component of angular momentum for certain inertial observers

placed at infinity (which ones?).

b Show that the local surface gravity κ̄ = κ/(||χ||) defined for the

special family of local observers previously introduced is universal in

the leading order for proper distance � � 1 (i.e. independent of the

BH parameters); more precisely show that

κ̄ =
1

�
(1 + curvature corrections) (5)

Interpret in terms of Rindler geometry. In what limit can one say

that the near horizon geometry is Rindler?

c With the above ingredients reproduce the argument leading to the

local first law and the local energy formula, given in the previous

pages, in all detail.

d The quasi-local energy and the Komar-like energy formula. Show

that the local energy can be written in terms of the Komar like

integral

E = − 1

8π

�

H

�abcd∇cud
(6)

where ua
is the four velocity of the local stationary observers defined

in previous pages.



H

WO

Singularity

δTab

Local first law
A refined argument 

Ja = δT a
bχb is conserved thus

�

H

dV dS δTabχ
akb =

�

WO

JbN
b

Na

ka

The Raychaudhuri equation

dθ

dV
= −8πδTabk

akb

�

H

dV dS V
dθ

dV
= −8π�χ �

κ
δE, δE =

κ

8π
δA

�

H

dV dS δTab κV ka
� �� �

χa

kb =
�

WO

�χ � δTabu
aN b



• Quasilocal first law using fields and Einsteins equations

a Define the energy momentum current Ja = Tabχb
and show that it

is conserved, where Tab = T (0)
ab

+ δTab (i.e. a background term plus

a perturbation representing a small amount of matter infalling into

and otherwise stationary Kerr-Newman black hole).

b Recalling that at the horizon the Killing generator χ satisfies χa∇aχb =

κχb (where κ is the surface gravity), and that the Killing generator

vanishes at the bifurcate horizon, show that there exist an affine gen-

erator ka
(i.e. ka∇akb = 0 ) such that

χa
= κV ka, (1)

with V the affine parameter associated to ka
and singled out by the

property that V = 0 at the bifrcate horizon.

c Gauss law is subtle when applied to null surfaces (see Wald GR pages

432-434). Show that the flux of Ja
across the horizon takes the form

Fhorizon =

�

H

dV dS2Tabχ
akb

(2)

where V is the affine parameter of point (b), and dS2
is the area

element of the spheres V = constant.

d Use Gauss law in the region limited by the horizon and the world-

sheet of local observers (see previous slide) combined with Raychaud-

huri equation (Wald 9.2.32) and Einsteins equations to prove the

quasilocal first law

δE =
κ̄

8π
δA. (3)

HINT: use the correct boundary condition for the expansion of ka
at

V =∞.

e Notice that the derivation of the local first law does not need the

normalization of the Killing field χ at infinity. Therefore, the local

first law is valid in a more general context than asymptotically flat

spacetimes. Indeed no asymptotic conditions are necessary for its

validity due to its intrinsically quasilocal nature.



H

WO

Singularity

δTab

Local first law
A refined argument 

Ja = δT a
bχb is conserved thus

�

H

dV dS δTabχ
akb =

�

WO

JbN
b

Na

ka

The Raychaudhuri equation

dθ

dV
= −8πδTabk

akb

�

H

dV dS V
dθ

dV
= −8π�χ �

κ
δE, δE =

κ

8π
δA

�

H

dV dS δTab κV ka
� �� �

χa

kb =
�

WO

�χ � δTabu
aN b



δE =
κ

8π
δA

The Local first law is dynamical
Simple example: Vaidya spacetime

IH2

IH1

IH1

IH1

IH2

IH1

WO

(18)

The same holds in non symmetric situations (detailed proof in 
progress AP, O. Moreschi, E. Gallo)



Implications for the 
quantum theory

The quasilocal approach: insights into the 
statistical mechanical origin of BH entropy

[Ghosh, Perez, 2011 PRL]
[Frodden, Ghosh, Perez, to appear]



�AS |j1, j2 · · · � =

�
8πγ�2p

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

The black hole area spectrum
The area gap

amin = 4πγ
√

3

Isolated Horizon

boundary conditions

[Ashtekar et al. 2000]



The energy spectrum
The area gap

amin = 4πγ
√

3

�H|j1, j2 · · · � =
�
γ�

2
p

�

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

The scale    is a fiducial quantity 
(a regulator)

The regulator is natural:
York 1983, Hajicek-Israel 1980.

�



a) By a rearrangement of the spin quantum numbers labelling spin network
links ending at punctures on the horizon without changing the number of
punctures N (in the large area regime this kind of transitions allows for area
jumps as small as one would like as the area spectrum becomes exponentially
dense in R+ [Rovelli 96]

b) By the emission or absorption of punctures with arbitrary spin (such tran-
sitions remain discrete at all scales and are responsible for a modification of
the first law: a chemical potential arises and encodes the mean value of the
area change in the thermal mixture of possible values of spins j).

�H|j1, j2 · · · � =
�
γ�

2
p

�

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

Is the number of punctures an important observable?
Energy Spectrum vs. Chemical Potential

amin = 4πγ
√

3



� ≡ arbitrary fixed proper distance to the horizon

 Present ingredient: Quantum 
IH physical state

Quantum bulk state = quantum gravity physical 
state describing BH background (thermal 

equilibrium at Unruh temperature)                                    

TU =
1

2π�

Computation of entropy in LQG
pure geometry calculation 

[for argument about how to perhaps avoid this
assumption see Bianchi 2012 and Pranzetti 2013]



Black Hole Entropy from LQG
Pure gravity calculation 

(neglecting matter contributions);
distinguishable punctures



• BH entropy

a In this exercise we will compute BH entropy in the simplest LQG
scenario. We assume punctures of the horizon (area quantum excita-
tions) are distinguishable. In the microcanonical ensemble we must
count how many states there are such that the following constraint
is satisfied (according to the form of the area spectrum in LQG)

C1 :
�

j

�
j(j + 1) sj =

A

8π�2g
, (1)

Ignoring global constraints (due to Chern-Simons formulation) show
that the number of states d[{sj}] associated with a configuration {sj}
(where sj denotes the number of punctures with spin j) is

d[{sj}] =
��

k

sk
�
!
�

j

(2j + 1)sj

sj !
. (2)

b Look for the configuration that maximizes the entropy log(d[{sj}])
subject to the above constraint.

c Show that—using Stirling’s approximation—the dominant configu-
ration sj

N
= (2j + 1)e−λ

√
j(j+1), (3)

where is a solution of

1 =
�

j

(2j + 1)e−λ
√

j(j+1). (4)

d Show that the entropy (defined as the value of log(d[{sj}]) on the
dominant configuration) is

S =
γ0
γ

A

4�2p
(5)

where γ0 = λ/(2π).

e Show that the previous result is in conflict with the local first law
(and hence with the usual first law) unless γ = γ0.

f Redo the exercise by imposing an additional constraint

C2 :
�

j

sj = N.

and show by computing S(A,N) that the conflict with the first law
disappears and all values of γ are allowed. Obtain an expression of
the entropy as a function of the area alone using the equation of state.



The canonical partition function is given by

Z(N, β) =
�

{sj}

�

j

N !
sj !

[(2j + 1)]sj e−βsjEj =⇒ log Z = N log[
�

j

[(2j + 1)]e−βEj ]

where Ej = �2g
�

j(j + 1)/�. A simple calculation gives For the entropy we get

S = − β2 ∂

∂β
(
1
β

log Z)
����
β=2π�

=
A

4�2p
+ log Z

more precisely

S =
A

4�2p
+ σ(γ)N where σ(γ) ≡ log[

�

j

(2j + 1)e−2πγ
√

j(j+1)].

The (thermodynamical) local first law versus the (geometric) local first law

δM =
κ

2π
δS + Ω δJ + Φ δQ + µ δN ⇐⇒ δM =

κ

2π
δA + Ω δJ + Φ δQ

µ = −T
∂S

∂N
|A = − κ

2π
σ(γ)

K. Krasnov (1999), S. Major (2001), F. Barbero E. 
Villasenor (2011)

amin = 4πγ
√

3

Number of punctures contribute to S



Number of punctures contribute to S

The canonical partition function is given by
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Number of punctures contribute to S
Distinguishability

The canonical partition function is given by
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Number of punctures contribute to S
Degeneracy

The canonical partition function is given by
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Number of punctures: an important observable

The canonical partition function is given by
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�= A

4�2p

[Hawking-Gibbons,

Carlip CFT, etc]



Matter
Can we consistently compute BH 

entropy neglecting matter? 
[Frodden, Ghosh, Perez, to appear]



The vacuum in QFT is not an empty page...
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� ≡ arbitrary fixed proper distance to the horizon

 Present ingredient: Quantum 
IH physical state

Quantum bulk state = quantum gravity physical 
state describing BH background (for matter fields in 
the semiclassical approximation = vacuum regular at 

horizon)                                    

TU =
1

2π�

Computation of entropy in LQG
Including matter d.o.f. 



What about matter?
Matter entanglement, t’Hooft brick wall model, etc

Smatter = λ
A

�2
+ corrections

λ = undertermined constant
(UV regularization dependent

species problem)

� = UV cut-off

Number of d.o.f.  dominated by 
boundary contribution

D ≈ exp(λA/(4�2p))



What about matter?
Matter entanglement, t’Hooft brick wall model, etc

Smatter = λ
A

�2
+ corrections

In LQG: Energy=Area
Matter d.o.f. = degeneracy of area 

spectrum

Just a new notation λ = 1−δ
4

� = �p

Degeneracy grows exponentially with A

D ≈ exp
�
λ

A

�2

�



What about matter?
Matter entanglement, t’Hooft brick wall model, etc

Smatter = λ
A

�2
+ corrections

In LQG: Energy=Area
Matter d.o.f. = degeneracy of area 

spectrum

Just a new notation λ = 1−δ
4

� = �p

number of punctures with spin j

D[{sj}] ≈
�

j

exp
(1− δ)ajsj

4�2p

sj ≡



Black Hole Entropy from LQG
Gravity+Matter; indistinguishable punctures

Z[β] =
�

{sj}

�

j

e−(β−βU+δβU )sjEj Z[βU ] =
�

j

[1± exp(−2πγδj)]±1

U =
A

8π�
= −∂β logZ

=
γ�2p
�

∞�

j=1/2

j

exp(2πγδj)± 1

A ≈
4�2p
πγδ2

� ∞

0

x dx

ex ± 1
=

�±π�2p
3γδ2

δ =

�
π�±�2p
3γA

� 1

The puncture is 
dressed by matter 

d.o.f.

−j ≤ m ≤ j

βU = 2π�



Black Hole Entropy from LQG
Gravity+Matter; indistinguishable punctures

RESULTS:

INPUTS:

Quasilocal Hamiltonian +

LQG quantum geometry

(Area spectrum)

D ≈ exp

�
1− δ

4

A

�2p

�
LQG UV finiteness + QFT

Indistinguishability
of punctures

Matter saturates

Holographic bound:
δ =

�
π�±�2p
3γA

� 1

S =
A

4�2p



1 +

�
π�±�2p
3γA

+ o(
γ�2p
A

)





S = βU + logZ

∆U

U
=

∆A

A
=

�
πγδ

Area fluctuations are small

C = −β2∂βU ≈ 2

πγδ3

�N� ≈
�
A/�2p, �j� ≈

�
A/�2p,

∆j ≈
�

A/�2p

The chemical potential vanishes µ = 0



Black Hole Entropy from LQG
Thermal state is a semiclassical low energy state
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Semiclassical and low energy regime

Thiemann, Sahlmann, Winkler (2001)

Ashtekar et al. (2001)

Han et al. (2012) see spin foam talk

Q: can we get a more explicit 
manifestation that we are indeed in the 

semiclassical regime?

Z[β] =
�

{sj}

�

j

e−(β−βU+δβU )sjEj
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Semiclassical correspondence
relationship with the Euclidean path integral

Z[β] =
�

N

�

{sj}

e−
�

j(β−βU+δβU )sjEj

≈
�

N

�

{sj}

e
−(β−2π�)

�
j sj

aj

8π�2p�

Z[β] ≈ ZPI [β]

ZPI [β] ≡
�

Dg(4)

β exp
�
− 1

16π�2p

�

M

R[g(4)]− 1

8π�2p

�

∂M

(K −K0)
�

≈ exp
�
− (β − 2π�)

A[g(2)]

8π�2p�

�

[Banados-Teitelboim-Zanelli, Carlip-Teitelboim, etc]

[E. Frodden thesis]



Conclusions

The quasilocal approach captures the relevant physics
for black hole thermodynamics.

It provides an effective energy notion proportional to
the horizon area.

It is complementary to the isolated horizon framework
of Ashtekar et. al.

This energy notion can be used in the statistical mechanical
description of the quantum horizon degrees of freedom.

It holds for stationary horizons that are not necessarily
asymptotically flat (no need to normalize killing fields in
the derivation of the quasilocal first law)



Conclusions

If matter contributions are neglected, the quantum geometry
degeneracy of the area spectrum implies low spin dominance.

S =
A

4�2p
+ σ(γ)N

The chemical potential µ �= 0.

No clear how to establish the correspondence with
the semiclassical low energy limit.

Punctures taken as distinguishable.
[Rovelli 96, Ashtekar-Baez-Corichi-Krasnov 98, Pithis 2012]



Conclusions

We can include the effects of matter in the quasilocal
treatment by the introduction of an extra degeneracy.

D ≈ exp(λA/(4�2p))

The chemical potential vanishes µ = 0

Assuming punctures are indistinguishable.

λ = 1
4 (no regularization ambiguities

no species problem)

S = A
4�2p

�2p � ā = �2p�j� � A

The thermal state of the horizon satisfies the
semiclassical and low energy condition

large spin dominance

Then, up to small quantum corrections:
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Conclusions (independent of quantum statistics)

We can include the effects of matter in the quasilocal
treatment by the introduction of an extra degeneracy.

D ≈ exp(λA/(4�2p))

The chemical potential vanishes µ = 0

Assuming punctures are indistinguishable.

λ = 1
4 (no regularization ambiguities

no species problem)

S = A
4�2p

�2p � ā = �2p�j� � A

The thermal state of the horizon satisfies the
semiclassical and low energy condition

large spin dominance

β̃ ≡ β − βU(1− δ)� 1



Outlook

[Ashtekar et al. and Thiemann et al. ≈ 2001]

[Smolin (1995), Krasnov (1996), Ashtekar-Baez-Corichi-Krasnov (2000),
Engle-Noui-AP (2010)]

Analytic continuation to self dual variables
[Frodden-Geiller-Noui-AP (2012), Bodendorfer-Stottmeister-Thurn (2012),
Pranzetti (2013)]

j is− 1
2

Dk(j1, . . . , jN ) i−pDk(is1 −
1
2
, . . . , isp −

1
2
) =

2
k + 2

k+1�

d=1

sin2

�
πd

k + 2

� p�

�=1

sinh
�

2πds�

k + 2

�

sin
�

πd

k + 2

�

self dual representations
satisfying reality condition Σ̂ · Σ̂ > 0

Can we have a microscopic description of the holographic
matter degeneracy in LQG?

• Studies of matter coupling in LQG and the relationship with QFT

• Chern-Simons quantum horizon for self dual gravity?



What about matter?
The vacuum in QFT

“We conclude that one has to attribute the black 
hole entropy not to the space-time metric itself 

but to the quantized fields present there 
[+gravity]... In short, the black hole entropy 

includes the entropy of the quantized fields in its 
neighborhood”

t’Hooft (1993) 



Thank you very much!
Roberto Matta “Integrale du Silence” (1990)


