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Evidence



Model Selection
• Given two models, how can we compare them? 

• Simplest approach = compare ML 

• Does not include uncertainty or Occam’s Razor 

• Recall that all our probabilities have been 
conditional on the model, as in Bayes:

P (p|M) =
P (d|pM)P (p|M)

P (d|M)



Model Selection:  
Bayesian Evidence

• Can use Bayes Theorem again, on model level: 

!

!

• Only really meaningful when comparing models. 
Bayes Factor B:

P (M |d) = P (d|M)P (M)

P (d)

Model Priors
P (M1|d)
P (M2|d)

=
P (d|M1)

P (d|M2)

P (M1)

P (M2)

Bayesian Evidence Values



Model Selection:  
Bayesian Evidence

• Likelihood of parameters within model: 

!

!

• Evidence of model:

P (d|pM)

P (d|p)



Model Selection: 
Bayesian Evidence

• Evidence is the bit we ignored before when doing 
parameter estimation 

• Given by an integral over prior space 

!

• Hard to evaluate - posterior usually small compared 
to prior 

P (d|M) =

Z
P (d|pM)P (p|M)dp



Model Selection: 
Evidence Approximations

• Nice evidence approximations for some cases: 

• Savage-Dickey Density ratio  
(for when one model is a subset of another) 

• Akaike information criterion AIC 
Bayesian information criterion BIC  
Work in various circumstances



Savage Dickey
• Applies to two models where M1 is restricted 

version of M2 

• e.g M1 = LCDM  Ω={Ωm, Ωb, …} with w=-1  
      M2 = wCDM 

!

• with separable priors

P (d|⌦,M1) = P (d|⌦, w = �1,M2)

P (⌦|w = �1,M2) = P (⌦,M1)



Savage Dickey

• In this case, Bayes factor given by

P (w = �1|d,M2)

P (w = �1|M2)

Posterior, 
integrated 

over Ω

Prior



Model Selection:  
Nested Sampling

Z
L(✓)p(✓)d✓ =

Z
L(X)dX

⇡
X

Li�Xi

dX ⌘ P (✓)d✓

X = remaining prior volume



Model Selection: 
Nested Sampling

• Also uses ensemble of live points 

• Computes constraints as well as evidence 

• Each iteration, replace lowest likelihood point with 
one higher up, sampled from prior 

• Multinest software is extremely clever 

• C, F90, Python bindings



Multinest Example
> cosmosis demos/demo9.ini 

> postprocess -o plots -p demo9 demos/demo9.ini 
--extra demos/extra9.py

Parameters Distance  
Calculation

Supernova  
Likelihood

Saved Cosmological Theory Information Total 
Likelihood

https://bitbucket.org/joezuntz/cosmosis/wiki/Demo9

H0  
Likelihood

https://bitbucket.org/joezuntz/cosmosis/wiki/Demo9


More Samplers



Importance Sampling
• Re-sampling from re-weighted existing samples 

• Changed prior / likelihood 

• New data

E[f(x)] =

Z
P1(x)f(x)dx ⇡ 1

N

X

Chain 1

f(xi)

=

Z ✓
P1(x)

P2(x)
f(x)

◆
P2(x)dx ⇡ 1

N

X

Chain 2

f(xi)
P1(xi)

P2(xi)



Importance Sampling
• i.e. 

• Take a chain you sampled from some distribution P2 

• Give each sample a weight P1(x)/P2(x) for some new 
distribution P1 

• Make your histograms, estimates, etc, using these 
weights



Importance Sampling

• Works better the more similar P2 is to P1 

• Won’t work if P2 small where P1 isn’t 

• So better for extra data than different data



Gibbs Sampling

• Applicable when have >1 parameters a, b, c, … z 

• And can directly sample from conditional likelihoods:  
    P(a|bcd…), P(b|acd…), P(c|abd…), … P(z|abc…y) 

• Can be very efficient when possible



Gibbs Sampling
• Very simple algorithm - just each parameter in turn  

• 2D version with parameters (a,b):  
 
 

for i = 1...

ai+1 ⇠ P (ai+1|bi)
bi+1 ⇠ P (bi+1|ai+1

)



Gibbs Sampling



Gibbs Sampling



Gibbs Sampling



• Multi-parameter case - not as bad as it looks: 

!

!

!

• Can also block groups of parameters together and 
update as vectors

Gibbs Sampling

for i = 1...

for k = 1...nparam

x

i+1
k ⇠ P (x

i+1
k |xi+1

1 , x

i+1
2 , ..., x

i+1
k�1, x

i
k+1, x

i
k+2, ..., x

i
nparam

)



Defining a pipeline run



Pipeline Definition
• Look at demos/demo2.ini 
 
[pipeline]  
modules = consistency camb planck bicep 
values = demos/values2.ini 

• Each module in the list is described lower down - 
file path to module and any options for it 

• Parameters defined in the “values” file



Building & extending 
likelihood pipelines



Managing Code

• Design before you write 

• Read about how to code! 

• If you don’t use version control you are definitely 
making a mistake. 

• Learn git.  It’s worth it.



Organizing Likelihoods
• Separate theory calculation from likelihood 

• Can replace methods and data independently 

• Don’t Repeat Yourself (D.R.Y.) 

• Use existing distance calculations, P(k,z), etc. 

• Libraries, Libraries, Libraries, Libraries, Libraries, 
Libraries, Libraries, Libraries, Libraries, Libraries, 
Libraries, Libraries, Libraries, Libraries, Libraries.



Connecting Code

Cosmosis Your CodeInterface



Creating a cosmosis module
• Given a piece of code implementing your module, we will 

write an interface connecting it to cosmosis 

• Need two functions:  
setup, execute 

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_python 

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_c 

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_fortran

https://bitbucket.org/joezuntz/cosmosis/wiki/modules_python
https://bitbucket.org/joezuntz/cosmosis/wiki/modules_c
https://bitbucket.org/joezuntz/cosmosis/wiki/modules_fortran


Setup

• Cosmology-independent settings and setup 

• e.g. loading data, limits on  

• Read settings from ini file



Execute

• Cosmology calculations 

• Main module work 

• Read inputs (from cosmosis) 

• Save outputs (to cosmosis)



Three Groups
• Non-programmers 

• Go through the demos at  
https://bitbucket.org/joezuntz/cosmosis 

• Did homework and coded Cepheid likelihood 😀 

• Create likelihood module 

• Didn’t do homework! 😠 

• Test a new w(z) theory

https://bitbucket.org/joezuntz/cosmosis


Creating a Likelihood
• Last time you coded up a likelihood for the LMC and extragalactic 

Cepheids 

• Here’s some data!  
    LMC       http://bit.ly/1vQ4RTV 
    Ex-gal    http://bit.ly/1tJzRBT 

• Note: there are complexities I skipped when describing this!  You’ll 
only get H0 to a factor of a few. 

• Let’s turn this into a cosmosis module 

• Inputs: h0, alpha, beta in cosmological_parameters 

• Outputs: cepheid_like in likelihoods

http://bit.ly/1vQ4RTV
http://bit.ly/1tJzRBT


Testing A New Theory
• Let’s constrain the w0-wz parameterisation 

!

!

• Use scipy.integrate.quad to do the integration 

• Inputs: h0, omega_m, w0, wz in 
cosmological_parameters 

• Outputs: z, mu in distances

⌦⇤(z) = ⌦⇤(0) (1 + z)3(1+w0�wz)
exp (�3wzz)

w(z) = w0 + wzz



Distance Equations
⌦⇤(z) = ⌦⇤(0) (1 + z)3(1+w0�wz)

exp (�3wzz)

⌦m(z) = ⌦m(1 + z)3

H(z) = H0

p
⌦m(z) + ⌦⇤(z)

Dc(z) = c

Z z

0

1

H(z0)
dz0

DL(z) = (1 + z)Dc(z)

µ(z) = 5 log10
DL

Mpc

� 25



Example Implementation

http://nbviewer.ipython.org/gist/joezuntz/d4b82ce5b3010870aa6b

http://nbviewer.ipython.org/gist/joezuntz/d4b82ce5b3010870aa6b


Getting Started
• Create a new directory under modules/ 

• Put your code in a file in there 

• Create another file in there (same language) to 
connect to cosmosis 

• See the wiki links above for examples of what they 
look like - adapt these for your code


