From data to theory and back

Exercises

August $3^{\text {rd }}, 2015$

Exercise1 Linearized Riemann, Ricci and Einstein tensors

Using that the Christoffel symbols at linear level are

$$
\Gamma_{\mu \nu}^{\alpha}=\frac{1}{2}\left(\partial_{\mu} h_{\nu}^{\alpha}+\partial_{\nu} h_{\mu}^{\alpha}-\partial^{\alpha} h_{\mu \nu}\right)
$$

derive eqs.

$$
\begin{align*}
R_{\mu \nu \rho \sigma} & =\frac{1}{2}\left(\partial_{\nu} \partial_{\rho} h_{\mu \sigma}+\partial_{\mu} \partial_{\sigma} h_{\nu \rho}-\partial_{\mu} \partial_{\rho} h_{\nu \sigma}-\partial_{\nu} \partial_{\sigma} h_{\mu \rho}\right) \\
R_{\mu \nu} & =\frac{1}{2}\left(\partial_{\rho} \partial_{\mu} h_{\nu}^{\rho}+\partial_{\rho} \partial_{\nu} h_{\mu}^{\rho}-\square h_{\mu \nu}-\partial_{\mu} \partial_{\nu} h\right) \\
R & =\frac{\partial_{\mu}}{} \partial_{\nu} h^{\mu \nu}-\square h, \\
G_{\mu \nu} & =\frac{1}{2}\left(\partial_{\rho} \partial_{\mu} h_{\nu}^{\rho}+\partial_{\rho} \partial_{\nu} h_{\mu}^{\rho}-\square h_{\mu \nu}-\partial_{\mu} \partial_{\nu} h-\eta_{\mu \nu} \partial_{\nu} \partial_{\nu} h^{\mu \nu}+\eta_{\mu \nu} \square h\right), \tag{1}
\end{align*}
$$

Exercise2 Retarded Green function I

Show that the two representation of the retarded Green function given by

$$
\begin{aligned}
G_{r e t}(t, \mathbf{x}) & =-\delta(t-r) \frac{1}{4 \pi r} \\
G_{a d v}(t, \mathbf{x}) & =-\delta(t+r) \frac{1}{4 \pi r}
\end{aligned}
$$

and

$$
\begin{aligned}
& G_{r e t}(t, x)=-i \theta(t)\left(\Delta_{+}(t, x)-\Delta_{-}(t, x)\right), \\
& G_{a d v}(t, x)=i \theta(-t)\left(\Delta_{+}(t, x)-\Delta_{-}(t, x)\right),
\end{aligned}
$$

where

$$
\Delta_{ \pm}(t, x) \equiv \int_{\mathbf{k}} e^{\mp i k t} \frac{e^{i \mathbf{k x}}}{2 k}
$$

are equivalent. Hint: use that

$$
\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x}=\delta(x)
$$

and that

$$
\theta(t) \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k(t+r)}=0 \quad \text { for } r \geq 0 .
$$

Exercise3 Retarded Green function II

Use the representation of the $G_{r e t, a d v}$ obtained in the previous exercise to show that

$$
\begin{aligned}
& G_{r e t}(t, \mathbf{x})=-\int_{\mathbf{k}} \frac{d \omega}{2 \pi} \frac{e^{-i \omega t+i \mathbf{k x}}}{k^{2}-(\omega+i \epsilon)^{2}} \\
& G_{a d v}(t, \mathbf{x})=-\int_{\mathbf{k}} \frac{d \omega}{2 \pi} \frac{e^{-i \omega t+i \mathbf{k} \mathbf{x}}}{k^{2}-(\omega-i \epsilon)^{2}}
\end{aligned}
$$

where ϵ is an arbitrarily small positive quantity. Hint: use that

$$
\theta(\pm t)=\mp \frac{1}{2 \pi i} \int \frac{e^{-i \omega t}}{\omega \pm i \epsilon}
$$

Show that $G_{r e t}$ is real.

Exercise4 Feynman Green function I

Show that the G_{F} defined by

$$
G_{F}(t, \mathbf{x})=-i \int_{\mathbf{k}} \frac{d \omega}{2 \pi} \frac{e^{-i \omega t+i \mathbf{k x}}}{k^{2}-\omega^{2}-i \epsilon}
$$

is equivalent to

$$
G_{F}(t, \mathbf{x})=\theta(t) \Delta_{+}(t, \mathbf{x})+\theta(-t) \Delta_{-}(t, \mathbf{x}) .
$$

Derive the relationship

$$
G_{F}(t, \mathbf{x})=\frac{i}{2}\left(G_{a d v}(t, \mathbf{x})+G_{r e t}(t, \mathbf{x})\right)+\frac{\Delta_{+}(t, \mathbf{x})+\Delta_{-}(t, \mathbf{x})}{2}
$$

Exercise5 Feynman Green function II

By integrating over \mathbf{k} the G_{F} in the $\sim 1 /\left(k^{2}-\omega^{2}\right)$ representation, show that G_{F} implements boundary conditions giving rise to field h behaving as

$$
h(t, \mathbf{x}) \sim \int d \omega e^{-i \omega t+i|\omega| r}
$$

corresponding to out-going (in-going) wave for $\omega>(<) 0$.

Exercise6 TT gauge

Show that the projectors defined by

$$
\begin{aligned}
\Lambda_{i j, k l}(\hat{n}) & =\frac{1}{2}\left[P_{i k} P_{j l}+P_{i l} P_{j k}-P_{i j} P_{k l}\right], \\
P_{i j}(\hat{n}) & =\delta_{i j}-n_{i} n_{j},
\end{aligned}
$$

satisfies the relationships

$$
\begin{array}{r}
P_{i j} P_{j k}=P_{i k} \\
\Lambda_{i j, k l} \Lambda_{k l, m n}=\Lambda_{i j, m n},
\end{array}
$$

which characterize projectors operator.

Exercise7 Energy of circular orbits in a Schwarzschild

 metricConsider the Schwarzschild metric

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 G_{N} M}{r}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 G_{N} M}{r}\right)}+r^{2} d \Omega^{2} . \tag{2}
\end{equation*}
$$

The dynamics of a point particle with mass m moving in such a background can be described by the action

$$
S=-m \int d \tau=-m \int d \lambda \sqrt{-g_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}}
$$

for any coordinate λ parametrizing the particle world-line. Using $S=\int d \lambda L$, we can write

$$
L=-m\left[\left(1-\frac{2 G_{N} M}{r}\right)\left(\frac{d t}{d \tau}\right)^{2}-\frac{\left(\frac{d r}{d \tau}\right)^{2}}{\left(1-\frac{2 G_{N} M}{r}\right)}-r^{2}\left(\frac{d \phi}{d \tau}\right)^{2}\right]^{1 / 2}
$$

Verify that L has cyclic variables t and ϕ and derive the corresponding conserved momenta.
(Hint: use $g_{\mu \nu}\left(d x^{\mu} / d \tau\right)\left(d x^{\nu} / d \tau\right)=-1$. Result: $E=m(d t / d \tau)\left(1-2 G_{N} M / r\right) \equiv$ $m e$ and $\left.L=m r^{2}(d \phi / d \tau) \equiv m l\right)$.
By expressing $d t / d \tau$ and $d \phi / d \tau$ in terms of e and l, derive the relationship

$$
e^{2}=\left(1-2 G_{N} M / r\right)\left(1+l^{2} / r^{2}\right)+\left(\frac{d r}{d \tau}\right)^{2}
$$

From the circular orbit conditions $\left(\frac{d e}{d r}=0=d r / d \tau=0\right)$, derive the relationship between l and r for circular orbits.
(Result: $l^{2}=r^{2} /\left(\frac{r}{M}-3\right)$).
Substitute into the energy function e and find the circular orbit energy

$$
e(x)=\frac{1-2 x}{\sqrt{1-3 x}}
$$

where $x \equiv\left(G_{N} M \dot{\phi}\right)^{2 / 3}$ is an observable quantity as it is related to the GW frequency $f_{G W}$ by $x=\left(G_{N} M \pi f_{G W}\right)^{2 / 3}$.
(Hint: Use

$$
\dot{\phi}=\frac{d \phi}{d \tau} \dot{\tau}=\frac{l}{r^{2}}\left[1-\frac{2 M}{r}-r^{2} \dot{\phi}^{2}\right]^{1 / 2}
$$

to find that on circular orbits $(M \dot{\phi})^{2}=\left(G_{N} M / r\right)^{3}$, an overdot stands for derivative with respect to t.)
Derive the relationships for the Inner-most stable circular orbit

$$
\begin{aligned}
r_{I S C O} & =6 G_{N} M=4.4 \mathrm{~km}\left(\frac{M}{M_{\odot}}\right) \\
f_{I S C O} & =\frac{1}{6^{3 / 2}} \frac{1}{G_{N} M \pi} \simeq 8.8 \mathrm{kHz}\left(\frac{M}{M_{\odot}}\right)^{-1} \\
v_{I S C O} & =\frac{1}{\sqrt{6}} \simeq 0.41
\end{aligned}
$$

Exercise8 Newtonian force exerced by GWs

Derive the equivalent Newtonian-like force

$$
\begin{equation*}
\ddot{\xi}=\frac{1}{2} \ddot{h}_{i j} \xi^{j}, \tag{3}
\end{equation*}
$$

from the geodesic deviation equation

$$
\frac{D^{2} \xi^{i}}{d \tau^{2}}=-R_{0 j 0}^{i} \xi^{j}\left(\frac{d x^{0}}{d \tau}\right)^{2}
$$

Exercise9 World-line action

Derive the geodesic equation

$$
\ddot{x}^{\mu}+\Gamma_{\rho \sigma}^{\mu} \dot{x}^{\rho} \dot{x}^{\sigma}=0
$$

from the world-line action

$$
S_{w l}=\int d t d^{3} y \sqrt{-g_{\mu \nu} \dot{y}^{\mu} \dot{y}^{\nu}} \delta^{(3)}(y-x(t))
$$

