
Part 3: Improving parton showers with fixed-order calculations

a) Recap
b) Dedicated improvements: Matrix element corrections and NLO

matching
c) Iterative improvements: Multi-jet merging
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Recap of last lecture

• QCD scattering cross sections factorise.
• The factorisation can be cast into a probabilistic form suitable for a

numerical implementation.
• Parton showers tell us how the inclusive cross section is sliced up

into exclusive objects, where exclusive means a fixed number of
resolved jets.

• Exclusive cross sections are defined through no-emission
probabilities.

• All cross sections can be writen as a polynomial of logarithms.
• This log-structure can be illustrated on figures.

• Systematic improvements of modern showers are possible due to
local energy-momentum conservation.
=⇒ This lecture!
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Parton shower snippets: Probabilities

Parton showers calculate no-emission probabilities (= Sudakov factors),
splitting kernels and emission probabilities:

Π(ρ0, ρ1) = exp
(

−
∫ ρ0

ρ1

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)

)
≡

aa
Probability of no resolv-
able emission with evo-
lution scale in the range
[ρ1, ρ0].

∫ ρ0

ρ1

dp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z) ≡

aa
Probability of a resolv-
able emission in the inter-
val [ρ1, ρ0]

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)Π(ρ0, ρ) ≡

aa
Probability of a exactly
one resolvable emission,
with evolution scale ρ.

The no-emission probabilities are approximate all-order virtual corrections.
These cancel the approximate real emissions exactly.
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Recap: PS fixed order input

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Recap: PS resums LL rows into no-emission probabilities (no PS emission)

Logs

Loops

Legs
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P(z) Π0(ρ0, ρ) O1

5 / 88



Recap: PS fills layers of LL loop corrections (one PS emission)

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
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Recap: PS fills layers of LL loop corrections (no or one PS emission)

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Recap: PS fills layers of LL loop corrections (sum of all PS results)

Logs

Loops

Legs

σ0 or more jets = σexactly 0 jets + σexactly 1 jet + σexactly 2 jets + . . . + σn or more jets
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Parton showers vs. fixed order

Parton showers give an approximate multi-parton (jet) cross section which…
• All-order parton showers: + Is always finite.

+ is good for any number of emissions.
− but is only valid for very small relative p⊥.

Is your signal affected by (many) jets1?
=⇒ Need good calculation for partonic jet seeds!
=⇒ Need something better than plain parton shower.
=⇒ Combine the strengths of showers and fixed-order calculations!

• Fixed-order perturbation theory: + Contains all terms at one order.
+ Good for high relative p⊥.
− Only feasible for few emissions.

Parton showers start from lowest-multiplicity tree-level inputs. The next step is
next-to-leading order.
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1 Translation: You need to apply njets , p⊥jet , HT cuts or use ”kinematic endpoint variables” like MT2 .
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Parton showers vs. fixed order
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Parton shower improvement schemes

• Matrix element corrections.
• Oldest scheme: Exponentiate specific real-emission calculations.
• Usage in Herwig(++) and Pythia(8) slightly different.
• Very hard to iterate.

• Matrix element matching.
• Combine a single adapted NLO calculation with the parton shower.
• Hard to iterate.

• Matrix element merging.
• Slice phase space in two, use ME for hard jets, PS for soft jets.
• Very easy to iterate.

We will use Bn for the tree-level n-parton differential cross section, and B̃n or
Bn for NLO cross sections that are differential in n-parton phase space.
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Matrix element corrections

Remember how we constructed the parton shower:
• Find a factorizing approximation.
• Cast the factorising functions into probabilities.
• Choose branchings probabilistically.

Idea: Find new probabilities that add to the full emission ME.

For this, we need a) an overestimate for the double-differential partonic cross
section Pfull-ME, and b) a corrective probability PME-correction, so that∑

PPS,i ∗ PME-correction,i =
∑

Pnew ≡ Pfull-ME with

PME-correction,i = PiPfull-ME
PPS,i

and
∑

i

Pi = 1

Then we can use two steps to correct an emission to the full ME result:
1. Choose a branching according to PPS,i
2. Accept with probability PME-correction,i

Summed over all possibilities, this gives the full ME (“Veto algorithm”). 11 / 88



ME corrections: Start from lowest order cross section.

Logs

Loops

Legs

B0
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ME corrections: Produce no emissions according to new probability

Logs

Loops

Legs

B0Π
B

0
(ρ0, ρc)

where ΠB
0 (ρ0, ρc) = exp

(
−

∫
dΦ̂B1

B0
Θ(ρ(Φ̂) − ρc)

)
= exp

(
−

∫
dΦ̂PnewΘ(ρ(Φ̂) − ρc)

)
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ME corrections: Generate emissions according to new probability

Logs

Loops

Legs

B0 +

w1

ΠB

0 (ρ0, ρc)

ΠB

0 (ρ0, ρc)
B1

B0

B0

This reproduces the full 1-parton radiation pattern, and is finite!
14 / 88



Matrix element corrections
Pro

• Rather natural within parton shower.
• Full ME (incl. interferences) gets exponentiated, not only approximation!
• Very efficient.

Contra
• Difficult to find overestimates, projectors and corrective weights.
• Exponentiation extends over full phase space (need to integrate the

1-parton ME over full phase space).
• Difficult to iterate, since ME-correction for n + 1-partons has to divide out

n-parton ME.
Subtleties

• The hardest emission has to be corrected, not only the first emission.
• Need to use “soft” and “hard” corrections if PS does not cover phase

space: Add full ME in the gaps (hard), ME corrections for every “hardest
emission” in the evolution (soft).

⇒ Usual attitude: Process dependent, tricky to achieve generality or iterate.

Note: Vincia iterates MEC’s for e+e− → jets, and also aims for pp collisions.
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ME corrections results
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ME corrections results
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NLO matching

We know how to construct the correct real emission, so can we achieve NLO
accuracy for inclusive +0-jet as well?

To get there, remember that the (regularised) NLO cross section is

BNLO = [Bn + Vn + In] O0 +
∫

dΦrad (Bn+1O1 − Dn+1O0)

= [Bn + Vn + In] O0 +
∫

dΦrad (Sn+1O0 − Dn+1O0)

+
∫

dΦrad

[
Sn+1O1−Sn+1O0

]
+

∫
dΦrad (Bn+1O1−Sn+1O1)

where Sn+1 are approximate virtual/real PS corrections.

The term in […] is the O(αs) part of a shower from Bn. ⇒ For now discard
from BNLO =⇒ ”Seed” cross section
⌢

BNLO =
[

Bn + Vn + In +
∫

dΦrad (Sn+1 − Dn+1)
]

O0 +
∫

dΦrad (Bn+1 − Sn+1) O1

This is not the NLO result…but showering the O0-part will restore this!
=⇒ NLO +PS accuracy!
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POWHEG

We have found that NLO +PS is possible if we start from the seed cross section
⌢

BNLO =
[

Bn + Vn + In +
∫

dΦrad (Sn+1 − Dn+1)
]

O0 +
∫

dΦrad (Bn+1 − Sn+1) O1

where Sn+1 is the PS approximation of the n + 1-jet rate.

=⇒ The NLO matching only depends on the first PS step!
The first step can be done externally. Using Sn+1 = Bn+1, i.e. a MEC for the
first splitting, we find

⌢

BNLO =
[

Bn + Vn + In +
∫

dΦrad (Bn+1 − Dn+1)
]

O0 = Bn

=⇒ Seed cross section is simply the inclusive NLO result. This is POWHEG.

Roughly, POWHEG combines an ME correction with an NLO weight.

POWHEG-BOX is an ME generator that provides NLO inputs for parton showers.
One (ME corrected) emission is done by POWHEG-BOX, other emissions have
to be filled in by PS.
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POWHEG illustration

Logs

Loops

Legs

B0

Shower from the seed cross section can give no emission, or one emission.
The hardness of the emission is defined differently from parton shower.
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POWHEG illustration

Logs

Loops

Legs

B0
× ΠB

0
(ρ0, ρc)

Shower from the seed cross section can give no emission, or one emission.
The hardness of the emission is defined differently from parton shower.
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POWHEG illustration

Logs

Loops

Legs

B0
× ΠB

0
(ρ0, t1) × B1

B0

Shower from the seed cross section can give no emission, or one emission.
The hardness of the emission is defined differently from parton shower.

22 / 88



POWHEG illustration

Logs

Loops

Legs

B0
× ΠB

0
(ρ0, t1) × B1

B0

× Π0 (t1, ρc)

The shower needs to be attached to this intermediate result, without
introducing overlaps ⇒ Truncated, vetoed shower necessary.
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POWHEG illustration

Logs

Loops

Legs

B0
× ΠB

0 (ρ0, t1) × B1

B0

× Π0 (t1, ρc)
B0

× ΠB

0 (ρ0, ρc) +

The sum of all parts gives an NLO +PS simulation
introducing overlaps ⇒ Truncated, vetoed shower necessary.
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POWHEG

Pro
• Inherits pros from ME correction.
• Full ME (incl. interferences) gets exponentiated, not only approximation!
• Mostly positive weights!

Contra
• Inherits cons from ME correction.
• Exponentiation extends over full phase space (need to integrate the

1-parton ME over full phase space).
• Difficult to iterate.

Subtleties
• Interface can be very subtle, nearly invalidating the PS independence.
• Truncated, vetoed shower cannot captures full parton shower.
• Can be redefined to consist of “soft” and “hard” corrections, by using

Sn+1 = Bn+1F(Φ) instead, at cost of introducing parameters.
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MC@NLO

We have found that NLO +PS is possible if we start from the seed cross section

⌢

BNLO =
[

Bn + Vn + In +
∫

dΦrad (Sn+1 − Dn+1)
]

O0 +
∫

dΦrad (Bn+1 − Sn+1) O1

where Sn+1 is the PS approximation of the n + 1-jet rate.

=⇒ The NLO matching only depends on the first PS step!

It is possible to keep Sn+1 = Bn ⊗ KΘ(µQ − ρ), where the Θ-function limits the
subtraction to the PS phase space, and keep

BS
n =

[
Bn + Vn + In +

∫
dΦrad (Bn ⊗ KΘ(µQ − ρ) − Dn+1)

]
O0 S-events

BH
n =

∫
dΦrad (Bn+1 − Bn ⊗ KΘ(µQ − ρ)) O1 H-events

This emphasises the PS as an NLO subtraction. The matching now has soft
S-events and hard H-events. H-events are a non-logarithmic correction.
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MC@NLO

Pro
• Interface to PS very easy.
• Very controlled change of resummation!
• No new shower necessary.

Contra
• S-events alone, or H-events alone are not necessarily positive.
• No clear prescription how to handle/shower H-events.
• Difficult to iterate.

Subtleties
• PS needs to be a full NLO subtraction (requires colour-correct first

emissions), or instead use Sn+1 ≈ Bn ⊗ KΘ(µQ − ρ)
• If PS is a full NLO subtraction, need to treat anti-probabilistic weights

(see e.g. SHERPA, HERWIG++).
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NLO matching results and comparisons

p⊥ of t̄t-system at a 14 TeV LHC for t̄t-MC@NLO.
PS no-emission probability regulates the divergence. Hard tail given by fixed-order.

Question: When is this observable NLO accurate?
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NLO matching results and comparisons

p⊥ of Higgs boson at a 14 TeV LHC for gg → H-POWHEG and gg → H-MC@NLO.
PS no-emission probability regulates the divergence.
What happens in the tail?

Question: Is this observable NLO accurate?
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NLO matching results and comparisons

p⊥ of Higgs boson at a 14 TeV LHC for gg → H-POWHEG.
Variations: Use a different PS kernel Sn+1 = Bn+1F(Φ) in POWHEG.

⇒ This is a very big “higher-order” effect!
Good news: We can improve on this!
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NLO matching results and comparisons

Number of anti-k⊥ jets in
Z+jets events in ATLAS.
aa
Zero-jet bin is NLO accurate,
one-jet bin is leading order.
aa
NLO matched calculation can-
not describe high jet multiplic-
ities.
aa
⇒ No single NLO matched cal-
culation will describe this data.
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NLO matching

NLO matching can be obtained by showering the seed cross section
⌢

BNLO =
[

Bn + Vn + In +
∫

dΦrad (Sn+1 − Dn+1)
]

O0 +
∫

dΦrad (Bn+1 − Sn+1) O1

NLO matching methods differ in the choice of Sn+1:
POWHEG uses Sn+1 = Bn+1 or Sn+1 = Bn+1F(Φ)
MC@NLO uses Sn+1 = Bn ⊗ KΘ(µQ − ρ)

Pro
• Promotes the PS for one process to NLO accuracy!

Contra
• New calculation needed whenever obervable depends on another jet!
• Multiple matched calculations cannot be combined without major work.

Subtleties
• Interface to PS.
• Treatment of real-emission events.
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Part 3c: Iterative improvements

Introduction:
• Inclusive vs. exclusive observables
• Making inclusive cross sections additive

Tree-level merging:
• Overview of the traditional schemes
• Unitarisation

Overview of NLO merging schemes
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What is NLO accuracy?
NLO accuracy is achieved when we calculate corrections to an observable
that was already defined at a lower order.

e
+

real emission
e
+
e
−-pair rapidity

e
++

+

NLO accurate
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What is NLO accuracy?
…not all outcomes of an NLO calculation are ”NLO accurate”

e
+

real emission
e
+
e
−-pair transverse momentum

e
++

+

LO accurate
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What is NLO accuracy?
NLO up to 45 GeV, LO beyond!

e
+

real emission
e
− transverse momentum

e
++

+

NLO

LO
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What is NLO accuracy?
How many ”next-to’s” do you need to describe this at least to lowest
order accuracy everywhere?

Z

2nd jet

∆φ(e+e−-pair, hardest jet)

1st jet

3rd jet

180◦120◦60◦

1st jet

1st jet

2nd jet
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The ME+PS merging problem

Goal: Get an accurate prediction of multijet observables (e.g. ∆ϕZj, njets)
Idea: Combine predictions for arbitrary many jets into a single calculation!

Problems:
⋄ Cross sections in fixed-order perturbation theory are inclusive by

definition ⇒ Overlap:

σ(pp → X) ⊃ σ(pp → X + gluon)

=⇒ Remove overlap between these cross sections!
⋄ Fixed-order predictions break down for collinear or soft partons.
⋄ PS gives sensible result in the collinear or soft regions, but breaks

down for (many) well-separated jets.
⋄ Adding PS and fixed-order gives another overlap, since the PS

reproduces the LL approximation.
=⇒ Restrict PS to avoid this overlap!
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Tree-level merging

More precisely, what we want to achieve is:
n hardest jets in an event described by fixed-order calculation.
. . . that should lead to a good description of high p⊥ multi-jet data.
Any other emissions described by the PS.
. . . because the PS gets soft/collinear partons right.

For now, simplify and use only tree-level calculations. Remove the
singularities with a phase-space cut tMS (called merging scale).
tMS ∼ min{all possible jet separations} works.

Then, we can achieve that
• n hardest partons (above tMS) described with tree-level accuracy.
• softer partons (below tMS) described by the PS.

Watch out: a) We want the n hardest partons, not just n partons.
Watch out: b) Dependence on the arbitrary tMS should be small.
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Making fixed-order calculations additive

To convert fixed-order calculations into ”hardest parton” calculations,
remember that the PS generates exclusive cross sections

σ0 or more partons =
exclusive due to Sudakov factor︷ ︸︸ ︷

σexactly 0 parton +
exclusive due to Sudakov factors︷ ︸︸ ︷

σexactly 1 parton

+ σ2 or more partons︸ ︷︷ ︸
inclusive beyond 2 partons

Exclusive = Additive
⇒ Convert the inclusive states of the ME calculation into exclusive

hardest parton states by using the PS.

Different choices how to use the PS give different schemes:
• MLM: Approximate no-emission probabilities by veto on jets.
• CKKW: Analytic Sudakov factors as no-emission probabilities.
• CKKW-L: PS no-emission probabilities directly from PS trial showers.

(POWHEG: Real emission = Exclusive hardest emission because of Sudakov form factor)
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MLM jet matching

An intuitive way to make LO calculations additive is the MLM prescription:
⋄ Calculate the tree-level MEs, cut away every state with t(S+n) > tMS.

⋄ Reweight with αs- and PDF-ratios to minimise footprint.

⋄ Count partons before shower.

⋄ Start the PS on the ME configuration. After shower, count jets.
Veto the event if # shower jets does not match # ME partons1.

⋄ Combine by adding all accepted events.

⟨O⟩ = B0 O(S+0p)

× Veto (S+np)

+

∫
B1

w0
f w

0
αs

Θ (t (S+1) − tMS) O(S+1p)

× Veto (S+mp)

The prescription is nicely intuitive. However, the factors Veto (S+np) do not
have a direct correspondence to an object in (fixed- or all-order) QCD.
=⇒ Difficult to argue why scheme performs well, or badly.

Observation: Improved tMS-dependence by including PS-style dynamical
evaluation of αs-factors also in the ME.

1 Glossing over subtleties with the PS interface

here.
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⋄ Combine by adding all accepted events.

⟨O⟩ = B0 O(S+0p) × Veto (S+np)

+
∫

B1w0
f w

0
αsΘ (t (S+1) − tMS) O(S+1p) × Veto (S+mp)

The prescription is nicely intuitive. However, the factors Veto (S+np) do not
have a direct correspondence to an object in (fixed- or all-order) QCD.
=⇒ Difficult to argue why scheme performs well, or badly.

Observation: Improved tMS-dependence by including PS-style dynamical
evaluation of αs-factors also in the ME.

1 Glossing over subtleties with the PS interface

here.
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How do we minimise the dependence on tMS?

To find a better veto condition, we simply need to follow the PS more closely:
A veto on events with extra PS emissions produces a parton shower Sudakov
factor, which can make the ME exclusive!

Since we know the functional expression of our veto / Sudakov factor, we know
which factors we are missing to reduce the tMS dependence!

Remember: PS emissions use running αs (PDFs) to capture higher orders!
⇒ So far, running αs (PDFs) below tMS, fixed values above tMS

⇒ Remove mismatch by using running αs (PDFs) also in tree-level calculations.

Let’s look at an example.
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ME+PS merging example

Logs

Loops

Legs

B0

“Normal” shower from the 0-emission cross section can give no emission, or one emission.
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“Normal” shower from the 0-emission cross section can give no emission, or one emission.
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ME+PS merging example

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0Π0 (ρ0, ρc) +

B0 w1 K1

“Normal” shower from the 0-emission cross section can give no emission, or one emission.
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ME+PS merging example

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0Π0 (ρ0, ρc) +

B0 K1(ρ < ρMS)w1[ ]

“Normal” shower from the 0-emission cross section can give no emission, or one emission.
Veto all events with ρemission > ρMS. Add the reweighted 1-emission ME above ρMS.
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Merging algorithms step-by-step

We have defined a ME+PS merging by
1. Regularise MEs with tMS cut.
2. Make MEs exclusive by attaching PS no-emission probabilities Πi(ρi, ρi+1).
3. Reweight MEs with factors wi to include αs and PDF running.
4. Shower these inputs.

Veto event if the PS produced an additional “hard” emission.
5. Add up all processed phase space points.

Note: To calculate the necessary no-emission probabilities Πi(ρi, ρi+1) and
αs+PDF weights wi, we need to define the scales ρ0, ρ1, . . . , ρn.

This information can be extracted by constructing a parton shower history for
each tree-level phase space point.
PS histories not only define the ordering of emissions (i.e. the scale sequence
ρ0, ρ1, . . . , ρn) but also complete, physical intermediate states.
Complete int. states can be used for trial showers…and much more.

48 / 88



Parton shower histories
Construction of PS histories for input phase space points is crucial in ME+PS merging.

Different merging algorithms choose a PS history differently:
⋄ CKKW only constructs the scales of one history, with the k⊥ clustering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1)
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Parton shower histories
Construction of PS histories for input phase space points is crucial in ME+PS merging.

K2a

ρ2a

K2b

ρ2b

K2c

ρ2c

K2d

ρ2d

Different merging algorithms choose a PS history differently:
⋄ CKKW constructs scales only one history, using a k⊥ custering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1)
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Parton shower histories
Construction of PS histories for input phase space points is crucial in ME+PS merging.
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Different merging algorithms choose a PS history differently:
⋄ CKKW only constructs the scales of one history, with the k⊥ clustering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.

If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1)
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Parton shower histories
Construction of PS histories for input phase space points is crucial in ME+PS merging.
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Different merging algorithms choose a PS history differently:
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
Physical intermediate states Sn-jet allow trial showers: Run PS on Sn-jet.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1)
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Multileg merging can be iterated!

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0 Π0 (ρ0, ρc) +

B0 K1(ρ < ρMS)w1 [ ]+ B1

B0

(ρ > ρMS)

Π1 (ρ1, ρc)×

Previous zero+one leg merging result.
Now also veto all events with ρemission > ρMS when showering 1-emission MEs
…which can produce one hard + no soft jet, or one hard + one soft jet.
…and add the ME for two hard jets. 53 / 88
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Previous zero+one leg merging result.
Now also veto all events with ρemission > ρMS when showering 1-emission MEs
…which can produce one hard + no soft jet, or one hard + one soft jet.
Then add the ME for two hard jets. 54 / 88



Multileg merging can be iterated!
Logs

Loops

Legs

B0 Π0 (ρ0, ρc) +

Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 [ ]+ B1

B0

(ρ > ρMS)

Π1 (ρ1, ρc)×

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 Π1 (ρ1, ρ2)

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B1(ρ > ρMS) w1 Π1 (ρ1, ρ2)

w2

+

Π0 (ρ0, ρ1)B2(ρ > ρMS) w1 Π1 (ρ1, ρ2)

Previous zero+one leg merging result.
Now also veto all events with ρemission > ρMS when showering 1-emission MEs
…which can produce one hard + no soft jet, or one hard + one soft jet.
Then add the reweighted ME for two hard jets. Iterate. 55 / 88



Multileg merging

Merging methods differ in the choice
…with which no-emission probability to make MEs exclusive.
…how to decide on a sequence of states used in reweighting.

Pro
• Process independent.
• Combine multiple tree-level cross section with each other and with PS

resummation.
• Good prediction for exclusive observables.

Contra
• Not NLO (yet, see later)
• Changes inclusive cross sections.

Subtleties
• Treatment of non-shower like configurations.
• Non-shower type configurations might (depending on the scheme) require

truncated showers.
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Multijet merged results (CKKW-L)
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Bug vs. Feature in ME+PS

The ME includes terms that are not compensated by the PS approximate
virtual corrections (i.e. no-emission probabilities).
These terms from the ME are what we need to describe multiple hard jets!

But if we simply add samples, the “improvements” will degrade the inclusive
cross section: σinc will contain ln(tMS) terms.

Inclusive cross sections do not know about (cuts on) higher
multiplicities. Inclusive is inclusive!

Traditional approach: Don’t use a too small value for the merging scale.
→ Uncancelled terms numerically not important.

Unitary approach1:
Use a (PS) unitarity inspired approach exactly cancel the dependence
of the inclusive cross section on tMS.

1 JHEP1302(2013)094 (Leif Lönnblad, SP), JHEP1308(2013)114 (Simon Plätzer)
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Unitarised merging

We can use parton shower unitarity to rewrite CKKW-L as

⟨O⟩ = B0ΠS+0(ρ0, ρMS)O(S+0j)

+
∫

B1Θ (t (S+1) − tMS)w0
f w0

αsΠS+0(ρ0, ρ1)O(S+1j)

and replace

⟨O⟩ = B0 −
∫

dρ w0
f w0

αsB1ΠS+0(ρ0, ρ)Θ (t (S+1) − tMS) O(S+0j)

+
∫

B1Θ (t (S+1) − tMS)w0
f w0

αsΠS+0(ρ0, ρ1)O(S+1j)

=⇒ Unitarised ME+PS!
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ME+PS, σ changes because virtual cannot cancel real correction!
(tMS → PS cut-off ρc for simplicity)

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

K1 +B0
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Remember KLN ⇒ Construct approximate virtuals by integrating real!
(LoopSim)

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

+B1
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This also works when integrating reweighted exclusive real corrections!
(UMEPS)

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

+B1

Π0 (ρ0, ρ1)w1

w1 Π0 (ρ0, ρ1)
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Unitarised ME+PS merging (UMEPS)
This sketch can directly be extended to the case when we have

B̂2 = LO cross section, weighted with wf, wαs and Π’s∫
B̂n→m = integrated LO cross section, weighted with wf, wαs and Π’s.

For example two-jet merging:

⟨O⟩ =
∫

dϕ0

{
O(S+0j)

[
B0 −

∫
B̂1→0 −

∫
B̂2→0

]
+

∫
O(S+1j)

[
B̂1 −

∫
B̂2→1

]
+

∫ ∫
O(S+2j) B̂2

}
Integrated configurations are available anyway since we need them to perform
the reweighting with no-emission probabilities!
⇒ Do integration simply by replacing input state Sn-jet by Sn-1-jet.
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3-parton state
Physical Physical
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UMEPS step-by-step

Logs

Loops

Legs
B0

Start from the 0-parton ME
Start from 0-parton ME.
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UMEPS step-by-step: 0-jet inclusive ✓

Logs

Loops

Legs
B0

Start from the 0-parton ME
…and do nothing above tMS.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive ✓

B1(ρ > ρc)

B0

Logs

Loops

Legs
+

Then start from the 1-parton ME
…and do nothing above tMS.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive ✓

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

B0

Logs

Loops

Legs
+

Then start from the 1-parton ME
…and multiply no-emission probabilities and αs (PDF) weights.
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UMEPS step-by-step: 0-jet inclusive ✓, 1-jet inclusive ✓

Logs

Loops

Legs

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

Now restore the 0-jet inclusive cross section.
…by subtracting the integrated reweighted 1-jet cross section.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X , 2-jet inclusive ✓

Logs

Loops

Legs

B2(ρ > ρc)

B1(ρ > ρc)

B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

w1 Π0 (ρ0, ρ1)

+

Then start from the 2-parton ME
…by subtracting the integrated reweighted 1-jet cross section.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X , 2-jet inclusive ✓

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

+

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

Then start from the 2-parton ME
…and multiply no-emission probabilities and αs (PDF) weights.
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UMEPS step-by-step: 0-jet inclusive ✓, 1-jet inclusive ✓, 2-jet inclusive ✓

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

−

ρc

+w1Π0 (ρ0, ρ1)

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

w2Π1 (ρ1, ρ2)B2

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

Now restore the 0-jet and 1-jet inclusive cross sections
…by subtracting the integrated reweighted 2-jet cross section.
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UMEPS step-by-step: 0-jet inclusive ✓, 1-jet inclusive ✓, 2-jet inclusive ✓

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

−

ρc

+w1Π0 (ρ0, ρ1)

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

w2Π1 (ρ1, ρ2)B2

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

…and continue further, adding and subtracting…
Start from 0-parton ME.
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Unitarised paradigm, summary

Pro
• Inherits Pros from multileg merging.
• Does not change any of the inclusive cross sections by having better

approximate O(α+1
s ) corrections.

Contra
• Not NLO (yet, see later)
• Subtraction means counter events with negative weight.

Subtleties
• Inherited from multileg merging.
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Differences merging/matching

NLO matching is NLO-correct.
=⇒ Good uncertainty estimate, limited applicability.

Merging can be used to combine ”any number” of LO calculations.
=⇒ Questionable uncertainty, broad applicability.

We can be lucky if
…NLO matched calculation describes very exclusive data.
…merged calculations describe normalisations.

It would be unreasonable to expect
Luck in one process = Luck in another process

⇒ Both strategies are incomplete and need to be combined for a satisfactory
result.
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NLO merging: Strategy

Any leading-order method X only ever contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have
NLO accuracy for inclusive W + 0 jet observables
NLO accuracy for inclusive W + 1 jet observables
NLO accuracy for inclusive W + 2 jet observables

…all at the same time. And the method should be process-independent.

To do NLO multi-jet merging for your preferred LO scheme X, do:

⋄ Subtract approximate X O(αs)-terms, add multiple NLO calculations.
⋄ Ensure that real-emission parts of fixed-order calculations do not overlap.
⋄ Ensure that fixed-order and shower calculations do not overlap

…just as we did at leading order.

⇒ X@NLO

The meaning of “NLO ” will become clear below.
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NLO merging schemes

FxFx1: Combine MC@NLO’s by MLM jet matching@NLO
FxFx: Pro: Probably fewest counter events.
FxFx: Con: Restricted tMS range. Accuracy unclear.

MEPS@NLO2: Combine MC@NLO’s by METS@NLO
FxFx1: Pro: Improved Sudakovs.
FxFx1: Con: Restricted tMS range.

UNLOPS3: Combine MC@NLO’s or POWHEG’s by UMEPS @NLO
FxFx1: Pro: Unitarity by approximate NNLO terms.
FxFx1: Con: Naively, many counter events.

MiNLO4: Get zero-jet NLO by CKKW-reweighted 1-jet POWHEG after integration
FxFx1: Pro: Improved resummation, unitary.
FxFx1: Con: Process-dependent, only two NLO’s can be combined.

1JHEP1212(2012)061 (Frixione, Frederix), 2JHEP1304(2013)027 (Höche, Krauss, Schönherr, Siegert)
3 JHEP1303(2013)166 (Lönnblad, SP), JHEP1308(2013)114 (Plätzer), 4JHEP1305(2013)082 (Hamilton, Nason, Oleari, Zanderighi)
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FxFx plots
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MEPS@NLO plots

Sherpa MePs@Nlo
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UNLOPS results (W+jets)

Inclusive sample containing (W + no resolved)@NLO, (W + one resolved)@NLO and (W + two resolved)@LO.



NLO merged results (H+jets)

Figure: p⊥,H and ∆ϕ12 for gg→H after merging (H+0)@NLO, (H+1)@NLO, (H+2)@NLO,
(H+3)@LO, compared to other generators.

⇒ The generators come closer together if enough fixed-order matrix elements are
employed. The uncertainties after cuts are still very large.
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MiNLO plots
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NLO merging summary

NLO merging methods have (mostly) been derived from LO schemes.
Thus, we face many confusing acronyms.

Goal: Combine as many NLO calculations as are available into one
inclusive calculation.

Pro
• Best Monte Carlo predictions for broad variety of processes at LHC.

Contra
• Not NNLO (yet, see later)
• All schemes contain counter events with negative weight.

Subtleties
• Inherited from the multileg merging scheme used to derive the

method.
• All schemes differ in the treatment of yet higher orders.
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Next steps: NNLO matching

Idea: Use a NLO merging scheme, assume that the 0-jet inclusive cross
section after merging is σNLO merged = σNLO

0 = 1 + c1αs, and that we know
σNNLO
0 = 1 + c1αs + c2α2

s .

Then note

σNNLO

σNLO merged σNLO merged = (1 + c2α2
s + O(α3

s ))(1 + c1αs) = σNNLO + O(α3
s )

⇒ A unitary NLO merging scheme can easily be upgraded to NNLO!

MiNLO was upgraded (NNLO for Higgs) with a multiplicative K-factor.
⇒ POWHEG philosophy at NNLO

UNLOPS was upgraded (NNLO for Drell-Yan) by defining two classes of
states - “0-jet exclusive” and “1-jet inclusive”, and putting new NNLO
only for “0-jet exclusive” states.
⇒ MC@NLO philosophy at NNLO
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Back to the big picture: Some questions…

Detector event

Say an event contains one boson and three or four jets. Where do these
particles come from?
By now, we know quite well how to get these jets by dressing a complicated
hard scattering. But when does this apply?
What if two jets merge? What if the boson and a jet are collinear? What if the
jets have a low transverse momentum? What if pairs are back-to-back?
When colliding composite objects, many constituent scatterings ”compete” for
the collision energy – and multiple scattering can look like single complicated
scatterings! Which process produces the particles?
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Back to the big picture: Some questions…

Detector event Perturbative scattering

Say an event contains one boson and three or four jets. Where do these
particles come from?
By now, we know quite well how to get these jets by dressing a complicated
hard scattering. But when does this apply?
What if two jets merge? What if the boson and a jet are collinear? What if the
jets have a low transverse momentum? What if pairs are back-to-back?
When colliding composite objects, many constituent scatterings ”compete” for
the collision energy – and multiple scattering can look like single complicated
scatterings! Which process produces the particles?
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Back to the big picture: Some questions…

Detector event Multiple scattering Perturbative scattering

Say an event contains one boson and three or four jets. Where do these
particles come from?
By now, we know quite well how to get these jets by dressing a complicated
hard scattering. But when does this apply?
What if two jets merge? What if the boson and a jet are collinear? What if the
jets have a low transverse momentum? What if pairs are back-to-back?
When colliding composite objects, many constituent scatterings ”compete” for
the collision energy – and multiple scattering can look like single
complicated scatterings!
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Summary of Part 3: Improving parton showers with fixed-order calculations
• Parton showers can systematically improved with fixed-order calculations.
• Three major schools exist

• Matrix element corrections: Oldest scheme, dating back to 80’s.
Available for simple processes in all parton showers.
Iteratively used for e+e− in Vincia (even at NLO).

• Matrix element matching: “PS” used as extended subtraction for
NLO calculations.
Two schools: MC@NLO and POWHEG. Differences in exponentiation
and in treatment of real corrections.

• Matrix element merging: Emphasis on combining many multijet
ME’s. Make fixed-order calculations additive by making them
exclusive through no-emission probabilities. Then minimise the
impact of arbitrary slicing parameters.
Three schools: MLM, CKKW(-L) and UMEPS. Differences in
generation (approximation of) no-emission probabilities, and in the
treatment of non-showerlike configurations.
NLO merging: Combination of multiple NLO calculations. Take
leading-order merging X, remove approximate O(αs) terms and add
the full NLO. Inherits philosophy from LO merging scheme.
NLO merging should be the workhorse for LHC Run II.
NNLO matching: Recent extension of NLO merging methods.
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