1. Convert the covariant expression $\bar{\Psi} \rho^{\alpha} \partial_{\alpha} \Psi$, where

$$
\begin{equation*}
\psi=\binom{\psi_{+}}{\psi_{-}} \tag{1}
\end{equation*}
$$

and $\bar{\Psi}=\Psi^{\dagger} \rho^{0}$ are two-dimensional spinors, into the component expression

$$
\begin{equation*}
-2\left(\Psi_{+} \partial_{-} \Psi_{+}+\Psi_{-} \partial_{+} \Psi_{-}\right) \tag{2}
\end{equation*}
$$

with $\partial_{ \pm}=\frac{1}{2}\left(\partial_{0} \pm \partial_{1}\right)$.
Hint: Use the following convenient basis for the Dirac matrices

$$
\rho^{0}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-1 & 0
\end{array}\right), \quad \rho^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

2. Prove the following property (valid in two dimensions)

$$
\begin{equation*}
\rho^{\alpha} \rho_{\beta} \rho_{\alpha}=0 \tag{4}
\end{equation*}
$$

3. Show that the action

$$
\begin{align*}
& S=-\frac{1}{8 \pi} \int d^{2} \sigma e\left[\frac{2}{\alpha^{\prime}} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}+2 i \bar{\psi}^{\mu} \rho^{\alpha} \partial_{\alpha} \psi_{\mu}\right. \\
&\left.-i \bar{\chi}_{\alpha} \rho^{\beta} \rho^{\alpha} \psi^{\mu}\left(\sqrt{\frac{2}{\alpha^{\prime}}} \partial_{\beta} X_{\mu}-\frac{i}{4} \bar{\chi}_{\beta} \psi_{\mu}\right)\right] \tag{5}
\end{align*}
$$

is invariant under the following local world-sheet symmetries:
(a) Supersymmetry

$$
\begin{aligned}
\sqrt{\frac{2}{\alpha^{\prime}}} \delta_{\epsilon} X^{\mu} & =i \bar{\epsilon} \psi^{\mu} \\
\delta_{\epsilon} \psi^{\mu} & =\frac{1}{2} \rho^{\alpha}\left(\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{\mu} \partial_{\alpha}-\frac{i}{2} \bar{\chi}_{\alpha}\right) \epsilon \\
\delta_{\epsilon} e_{\alpha}^{a} & =\frac{i}{2} \bar{\epsilon} \rho^{\alpha} \chi_{\alpha} \\
\delta_{\epsilon} \chi_{\alpha} & =2 D_{\alpha} \epsilon
\end{aligned}
$$

where $\epsilon(\tau, \sigma)$ is a Majorana spinor which parametrizes susy transformations and D_{α} is a covariant derivative with torsion:

$$
\begin{aligned}
D_{\alpha} \epsilon & =\partial_{\alpha} \epsilon-\frac{1}{2} \omega_{\alpha} \bar{\rho} \epsilon \\
\omega_{\alpha} & =-\frac{1}{2} \epsilon^{a b} \omega_{\alpha a b}=\omega_{\alpha}(e)+\frac{i}{4} \bar{\chi}_{\alpha} \bar{\rho} \rho^{\beta} \chi_{\beta} \\
\omega_{\alpha}(e) & =-\frac{1}{e} e_{\alpha a} \epsilon^{\beta \gamma} \partial_{\beta} e_{\gamma}{ }^{a}
\end{aligned}
$$

where $\omega_{\alpha}(e)$ is the spin connection without torsion.
(b) Weyl transformations

$$
\begin{aligned}
\delta_{\Lambda} X^{\mu} & =0 \\
\delta_{\Lambda} \psi^{\mu} & =-\frac{1}{2} \Lambda \psi^{\mu} \\
\delta_{\Lambda} e_{\alpha}{ }^{a} & =\Lambda e_{\alpha}{ }^{a} \\
\delta_{\Lambda} \chi_{\alpha} & =\frac{1}{2} \Lambda \chi_{\alpha}
\end{aligned}
$$

(c) Super-Weyl transformations

$$
\begin{aligned}
\delta_{\eta} \chi_{\alpha} & =\rho_{\alpha} \eta \\
\delta_{\eta}(\text { others }) & =0
\end{aligned}
$$

with $\eta(\tau, \sigma)$ a Majorana spinor parameter.
(d) Two-dimensional Lorentz transformations

$$
\begin{aligned}
\delta_{l} X^{\mu} & =0 \\
\delta_{l} \psi^{\mu} & =-\frac{1}{2} l \bar{\rho} \psi^{\mu} \\
\delta_{l} e_{\alpha}{ }^{a} & =l \epsilon^{a}{ }_{b} e_{\alpha}{ }^{b} \\
\delta_{l} \chi_{\alpha} & =-\frac{1}{2} l \bar{\rho} \chi_{\alpha}
\end{aligned}
$$

(e) Reparametrizations

$$
\begin{aligned}
\delta_{\xi} X^{\mu} & =-\xi^{\beta} \partial_{\beta} X^{\mu} \\
\delta_{\xi} \psi^{\mu} & =-\xi^{\beta} \partial_{\beta} \psi^{\mu} \\
\delta_{\xi} e_{\alpha}{ }^{a} & =-\xi^{\beta} \partial_{\beta} e_{\alpha}{ }^{a}-e_{\beta}{ }^{a} \partial_{\alpha} \xi^{\beta} \\
\delta_{\xi} \chi_{\alpha} & =-\xi^{\beta} \partial_{\beta} \chi_{\alpha}-\chi_{\beta} \partial_{\alpha} \xi^{\beta}
\end{aligned}
$$

Note that Λ, ξ and l are infinitesimal functions of (τ, σ).
(f) Global space-time Poincaré transformations:

$$
\begin{aligned}
\delta X^{\mu} & =a^{\mu}{ }_{\nu} X^{\nu}+b^{\mu}, \quad a_{\mu \nu}=-a_{\nu \mu} \\
\delta h_{\alpha \beta} & =0 \\
\delta \psi^{\mu} & =a^{\mu}{ }_{\nu} \psi^{\nu} \\
\delta \chi_{\alpha} & =0
\end{aligned}
$$

4. Show that the commutator of two supersymmetry transformations on the fields X^{μ} and ψ^{μ}, i.e. $\left[\delta_{1}, \delta_{2}\right] X^{\mu}$ and $\left[\delta_{1}, \delta_{2}\right] \psi^{\mu}$, gives a translation.
5. Find the equations of motion for the fields derived from the action (5). Show the tracelessness of the energy momentum tensor $T_{\alpha \beta}$ and the ρ-tracelessness of its superpartner T_{F}.
6. Write the non-vanishing components of the energy-momentum tensor and the supercurrent in light-cone coordinates and show that they are conserved.
7. Show that the NS and R boundary conditions on the fermions allow to cancel the boundary terms in the variation of the action.
8. Obtain the mode expansions for the fermionic fields in the Ramond and NeveuSchwarz sectors of the open string.
9. Obtain the superVirasoro generators L_{m} and G_{r} in terms of oscillators.
10. Obtain the classical superVirasoro algebra:

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =-i(m-n) L_{m+n} \\
{\left[L_{m}, G_{r}\right] } & =-i\left(\frac{1}{2} m-r\right) G_{m+r} \\
\left\{G_{r}, G_{s}\right\} & =-2 i L_{r+s} \tag{6}
\end{align*}
$$

Useful identities:

1. $\bar{\lambda}_{1} \rho^{\alpha_{1}} \cdots \rho^{\alpha_{n}} \lambda_{2}=(-1)^{n} \bar{\lambda}_{2} \rho^{\alpha_{n}} \cdots \rho^{\alpha_{1}} \lambda_{1}$
2. $(\bar{\psi} \lambda)(\bar{\phi} \chi)=-\frac{1}{2}\left\{(\bar{\psi} \chi)(\bar{\phi} \lambda)+(\bar{\psi} \bar{\rho} \chi)(\bar{\phi} \bar{\rho} \bar{\lambda})+\left(\bar{\psi} \rho^{\alpha} \chi\right)\left(\bar{\phi} \rho_{\alpha} \lambda\right)\right\}$
