

Effective Field Theory for Cold Atoms III

H.-W. Hammer

Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI

Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

School on Effective Field Theory across Length Scales, ICTP-SAIFR, Sao Paulo, Brazil, 2016

Agenda

- 1. EFT for Ultracold Atoms I: Effective Field Theories & Universality
- 2. EFT for Ultracold Atoms II: Cold Atoms & the Unitary Limit
- 3. EFT for Ultracold Atoms III: Weak Coupling at Finite Density
- 4. EFT for Ultracold Atoms IV: Few-Body Systems in the Unitary Limit
- 5. Beyond Ultracold Atoms: Halo Nuclei and Hadronic Molecules

Literature

- G.P. Lepage, TASI Lectures 1989, arXiv:hep-ph/0506330
- D.B. Kaplan, arXiv:nucl-th/9506035
- E. Braaten, HWH, Phys. Rep. 428 (2006) 259 [arXiv:cond-mat/0410417]

EFT at Finite density

- Consider (repulsive) dilute Fermi gas → perturbative
 - Experiments with ultracold atoms
 - Structure similar to nuclear Skyrme energy functionals
 - Toy model for theory questions
- No interactions \Rightarrow free Fermi gas: $E/N = (3/5)E_F$
- Diagrammatic density expansion for E/N from EFT
- Low density \Rightarrow probe at low resolution ($k_{\rm F} \ll 1/R$)
 - Details of interaction unresolved (L = 0, 1, ...)

$$k \cot \delta_0(k) = -\frac{1}{a} + \frac{1}{2}r_e k^2 + \cdots, \qquad k^3 \cot \delta_1(k) = -\frac{3}{a_p^3} + \cdots$$

- Natural parameters ($a, a_p, r_e \sim R$), e.g. hard spheres
- Start with EFT in vacuum

L with most general local (contact) interactions:

$$\mathcal{L} = \psi^{\dagger} \Big(i \frac{\partial}{\partial t} + \frac{\overrightarrow{\nabla}^2}{2m} \Big) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2 + \frac{C_2}{16} \Big[(\psi \psi)^{\dagger} (\psi \overleftrightarrow{\nabla}^2 \psi) + \text{h.c.} \Big] \\ + \frac{C_2'}{8} (\psi \overleftrightarrow{\nabla} \psi)^{\dagger} \cdot (\psi \overleftrightarrow{\nabla} \psi) - \frac{D_0}{6} (\psi^{\dagger} \psi)^3 + \dots, \quad \text{with } \overleftrightarrow{\nabla} = \overleftarrow{\nabla} - \overrightarrow{\nabla}$$

• Dimensional Analysis: $C_{2i} \sim \frac{4\pi}{m}$

$$\frac{\pi}{n} R^{2i+1}, \quad D_{2i} \sim \frac{4\pi}{m} R^{2i+4}$$

• Feynman rules:

Dimensional Regularization

Evaluate loop integral in D spatial dimensions:

$$= -k^{2n}(-k^2 - i\epsilon)^{D/2 - 1}\Gamma\left(1 - \frac{D}{2}\right)(4\pi)^{-D/2} \quad \longrightarrow \quad -\frac{ik^{2n+1}}{4\pi}$$

- We consider limit $D \rightarrow 3$:
 - Pure power divergence
 - Completely subtracted in DR
- No poles in $D = 3 \Rightarrow C_{2i}$ independent of renormalization scale μ

technische

Match EFT to vacuum scattering amplitude at each order in k

Using dimensional regularization with minimal subtraction

$$C_0 = \frac{4\pi}{m}a, \quad C_2 = \frac{4\pi}{m}\frac{a^2r_e}{2}, \quad \text{and} \quad C'_2 = \frac{4\pi}{m}a_p^3$$

Calculate many-body observables

Energy Density

- Energy density $\mathcal{E} = E/V$ is sum of closed, connected Feynman diagrams
- Power counting rules at finite density
 - 1. for every propagator: $m/k_{\rm F}^2$
 - 2. for every loop integration: $k_{\rm F}^{5}/m$
 - 3. for every *n*-body vertex with 2i derivatives: $k_{\rm F}^{2i}R^{2i+3n-5}/m$
- Diagram with V_{2i}^n *n*-body vertices of each type scales as $(k_F)^{\nu}$:

$$\nu = 5 + \sum_{n=2}^{\infty} \sum_{i=0}^{\infty} (3n + 2i - 5) V_{2i}^n.$$

• Perturbation theory in $k_{\rm F}R$

(cf. Fetter, Walecka, Quantum Theory of Many-Particle Systems)

- 1. Write all diagrams up to given order in $k_{\rm F}$
- 2. Each line assigned conserved $\tilde{k} \equiv (k_0, \vec{k})$ and

$$iG_0(\tilde{k})_{\alpha\beta} = i\delta_{\alpha\beta} \left(\frac{\theta(k-k_{\rm F})}{k_0 - \omega_{\vec{k}} + i\epsilon} + \frac{\theta(k_{\rm F} - k)}{k_0 - \omega_{\vec{k}} - i\epsilon} \right), \quad \omega_{\vec{k}} = \frac{k^2}{2m}$$

- 3. For each vertex $\longrightarrow (\delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})$ (spin-independent interactions)
- 4. After spin summations, $\delta_{\alpha\alpha} \rightarrow -g$ in every closed fermion loop
- 5. Integrate $\int d^4k/(2\pi)^4$ with convergence factor $e^{ik_00^+}$ for tadpoles
- 6. Assign symmetry factor: $i/(S \prod_{l=2}^{l_{\max}} (l!)^k)$ counts vertex permutations and equivalent *l*-tuples of lines

Energy density: examples

- Second diagram has UV divergence
 - \rightarrow same renormalization as in vacuum

Typical UV divergence:

$$\mathcal{P}\!\int_{k_{\rm F}}^{\infty} \frac{d^3k}{q^2 - k^2} = \mathcal{P}\!\int_{0}^{\infty} \frac{d^3k}{q^2 - k^2} - \mathcal{P}\!\int_{0}^{k_{\rm F}} \frac{d^3k}{q^2 - k^2}$$

- Medium is a IR effect \Rightarrow renormalization unchanged
- Power divergences removed by dimensional regularization/MS
- Holes and particles count same
 - \Rightarrow no point in separate Goldstone diagrams here
- Textbook approach: (e.g. Fetter & Walecka)
 - \Rightarrow nonperturbative in potential
 - \Rightarrow sum ladders to remove divergence
 - \Rightarrow many diagrams

Energy density: dilute Fermi gas

• Contributions to \mathcal{E} at T = 0: (HWH, Furnstahl, Nucl. Phys. A 678 (2000) 277)

Results

Energy per particle for dilute Fermi gas

$$\frac{E}{N} = \frac{k_{\rm F}^2}{2m} \left[\frac{3}{5} + (g-1) \frac{2}{3\pi} (k_{\rm F}a) + (g-1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_{\rm F}a)^2 + (g-1)(0.0076 + 0.057(g-3)) (k_{\rm F}a)^3 + (g-1) \frac{1}{10\pi} (k_{\rm F}r_e) (k_{\rm F}a)^2 + (g+1) \frac{1}{5\pi} (k_{\rm F}a_p)^3 + (g-2)(g-1) \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) (k_{\rm F}a)^4 \ln(k_{\rm F}a) + \dots$$

Previously derived with correlation functions, Goldstone/Feynman diagrams (nonperturbative in potential!)
 (Lee, Yang, Efimov, Amusya,... 1960's)

Conventional Approaches

- Consider $(g-1)(g-3)(k_{\rm F}a)^3k_{\rm F}^2/(2m)$ term
- K-matrix Goldstone diagrams/T-matrix Feynman diagrams (Bishop, 1973)

Many-Body Interactions

- Many-body interactions appear naturally and are essential
- Nonanalytic term \rightarrow Three-body interactions

$$\mathcal{O}(k_{\rm F}^9\ln(k_{\rm F})):$$
 + ...

• Log-divergences in $3 \rightarrow 3$ scattering (Braaten, Nieto, PRB 55 ('97) 8090)

$$-i\mathcal{T}_{3\to 3} = -im^3 (C_0)^4 \, \frac{4\pi - 3\sqrt{3}}{8\pi^3} \Big[\frac{1}{D-3} - 2\ln\mu + \cdots \Big] - iD_0(\mu)$$

Many-Body Interactions

• $\mathcal{T}_{3\to 3}$ independent of μ : $\mu \frac{d}{d\mu} \mathcal{T}_{3\to 3} = 0$

$$\implies \mu \frac{d}{d\mu} D_0(\mu) = m^3 (C_0)^4 \, \frac{4\pi - 3\sqrt{3}}{4\pi^3} \qquad [D \to 3]$$

• Integrate:
$$D_0(\mu) = D_0(1/a) + m^3 (C_0)^4 \frac{4\pi - 3\sqrt{3}}{4\pi^3} \ln(a\mu)$$

Logarithm must match logarithm from remaining diagrams!

 \implies for $\mathcal{O}(k_{\rm F}^{9}(\ln k_{\rm F}))$ contribution to \mathcal{E} , evaluate D_0 term at $\mu = k_{\rm F}$ (avoids large cancellations between diagrams)

• Need renormalization of $3 \rightarrow 3$ scattering for complete $\mathcal{O}(k_{\rm F}^9)$

- EFT \rightarrow general approach to systematically exploit separation of scales
- Dilute & large g expansions for many-body systems
 - Dilute case: holes and particles count the same
- Many-body forces are unavoidable and essential
 - Nonanalytic term \leftrightarrow three-body force
- Pairing, finite systems using DFT,...
- Next:
 - Extension to large scattering length \Rightarrow unitary limit