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The transport rate of the messenger (Ca2+) determines 
the range of its spatio-temporal distribution and, 
consequently, the response it elicits.
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In oocytes Puffs & waves 
(figs & movies I. Parker)

The diffusive transport of substances plays a relevant 
role in many biological processes. 

Fertilization wave 
(Fontanilla & Nuccitelli)

Example: Ca2+ signals



But calcium does not diffuse freely inside the cytosol

Scheme of the mechanisms that modulate the 
distribution of intracellular calcium. From M D 
Bootman  and P Lipp, Calcium Signalling 
and Regulation of Cell Function 

The fastest trapping mechanism is 
buffering. Buffers diffuse more slowly 
than calcium ions, thus, they slow down 
the transport of calcium.  

The net transport can be described in 
terms of an effective diffusion 
coefficient that depends on [Ca2+]. 

Allbritton et al, 1992

Radioactive Ca2+ is added to a cytosolic 
extract. The radioactivity distribution after a 
time is fitted with a Gaussian to obtain D. 



What is effective diffusion?

How does it differ from “normal” (free) diffusion?

What is diffusion after all?



Explained by 
Einstein in 1905.

The mean square displacement of a diffusing 
particle in a simple solvent is proportional to the 
time elapsed: <x2>=2Dt (in one space dimension)

The distribution at time, t, of a set of 
particles that diffuse out of x=0 at t=0 is 
given by a Gaussian of width  
                      Δx = (2 D t) 1/2 

The diffusion coefficient, D, characterizes both the mean square 
displacement of a marked particle as well as the rate at which an 
initial distribution of particles spreads out with time.  

What is diffusion?
It is the macroscopic displacement that results 
from many randomly directed microscopic steps. 
In solutions, randomness is the consequence of 
collisions with “solvent molecules”. 



Diffusion and the central limit theorem

In the limit of r going to infinity the 
probability density of Z is:
If we consider directly the sum, 
Y=X1+ X2+…+Xr we conclude that, 
for large enough r its probability 
density is approximately given by:

Let X1, X2, …, Xr be a set of r independent random variables with 
zero mean and finite variance σ2. Let us define the variable: 

which has a variance σ2..

We can apply this to the random walker, r is the number of time 
steps and σ2= λ2 = 2dD with D the diffusion coefficient and d the 
number of dimensions. With PY(y) we can compute <Y(t)> and 
<Y2> and obtain <Y>=0 and <Y2>= 2 d D  t
In fact, PY(y) is a solution of the diffusion eq (for certain initial condition).



There is a finite time τ and the (net) direction of motion during each τ-interval is 
independent of one another.  

(free) Diffusion in a simple solvent

The displacement, r(t),  of the random walker after a time t ≫ τ is the sum of 
many independent (random) displacements (those performed during the 
intervals, τ). Due to the central limit theorem the probability that r(t) be within a 
volume of size d3r around the value r is Gaussian-distributed:

The mean square displacement of the 
random walker is:  

with d the number of dimensions and 
D the diffusion coefficient ([D]=length2/
time).  



If one considers N particles that perform their random walks independently of 
one another, then, the Gaussian probability density, P, also serves to describe 
the concentration of these random walkers as a function of position and time, 
c(r, t), for an initial condition in which all the particles are located at the origin (so 
that the displacement after a time t of each of them is equal to its position):

This concentration is a solution of 
the diffusion equation introduced by 
Fick:

The diffusion equation rules the dynamics of the local changes in the mean 
number of particles (or, equivalently, its concentration) inside a region that is 
macroscopically small but microscopically large. 

The diffusion coefficient, D, can in principle be estimated from the mean square 
displacement of a single random walker or from the spread of a population of 
particles whose concentration evolves as in the solution above. 

Due to the linearity of the diffusion equation, if there is an equilibrium situation 
(i.e., stationary and uniform concentration) and one adds some particles at the 
origin, then the perturbation to the concentration will change in time according to 
the diffusion equation and will spread out with the diffusion coefficient D. 



But in the crowded environment of a cell’s interior, the transport of molecules 
hardly ever corresponds to free diffusion in which the dynamics of the molecules 
is solely determined by their collisions with a simple solvent. 

The existence of obstacles or of other interactions can give rise to what is called 
anomalous diffusion a situation in which the mean square displacement of a 
particle grows with time as ~tγ with γ different from 1.

Subdiffusive transport (i.e. with γ  < 1) has been observed experimentally in 
porous systems and on cell membranes

What about the central limit theorem?

Anomalous diffusion exponents associated with 
the diffusion of streptavidin in solutions 
crowded with either BSA or non-fluorescent 
streptavidin for different concentrations of the 
obstacle proteins, C. Fradin’s experiments.

Some of the assumptions of the theorem must not hold. In particular, 
subdiffusion is obtained with random walks in which there is not a well-defined 
mean time, τ, between collisions, but rather those times are taken from a long-
tailed distribution 



Numerically simulations show that subdiffusion can arise when the 
random walkers have restrictions to their movement or if they bind to 
immobile sites.  

 However, in most of these simulations, the anomalous transport only 
holds within a certain time window. In those cases, if one computes the 
mean square displacement of a particle after a long enough time (i.e. for 
enough averaging over the individual random steps of the particle of 
interest) the behavior of the linear dependence between the mean-
square displacement and the elapsed time predicted by the central-limit 
theorem is recovered.

The “diffusion coefficient” in this 
long time limit is smaller than the 
one that is obtained in the 
absence of traps or movement 
restrictions. It is “effective”.

The truly anomalous transport 
occurs when the waiting time 
distribution is long tailed. 



A+B k+ ,k−
← →$$ CSimplest case:

An intuitive explanation of effective coefficients
With B and C moving at the same rate  
(mB>>mA)

If B and C diffuse with coefficient, DS, then: 

If the free diffusion of A is Df, then:  
       <r2(t)> = 2 d Df t when [B]=0         and          <r2(t)>= 2 d Df tf = 2 d [(Df tf)/t] t 
Thus, Def = Df  <tf>/(<tf> + <tb>)

Illustration for B and C immobile:

 <tf> and <tb> are functions of concentrations and reaction rates. 
Problem: which ones? Depends on whether we are following a single 
particle or looking at the behavior of the concentration.  

Deff =
t f Df + tb DS

t f + tb



We obtained that, in the long time, the dynamics was approximately 
diffusive with effective coefficients Dt & Du (Dt<Du) which for DS=0 are:

For the mean square displacement of a 
single marked particle, the spread of a set 
of marked particles and for FRAP. 

For the rate at which a small inhomogeneity 
(of particles that are undistinguishable from 
the background) spreads out with time.  

and studied the evolution after:  
1. A small amount of marked particles (Pt) was added. 
2. All particles in a region were initially marked (FRAP).   
3. Similar to 1 but with unmarked particles (Pu).

In Pando et al, 2006 we studied the diffusion of particles, P, which 
diffused with free coefficient, Df, and reacted with immobile traps, S, 
according to:                       with a total concentration of traps, ST

We assumed an initial equilibrium situation with unmarked particles, Pfeq, 
Pbeq, Seq : with:

Single            Dsm= 
molecule: Collective: Dcoll=

Dt/Du can be arbitrarily small!
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Some particle simulations (Sigaut et al, 2014)

Free Diffusion 

Reaction-diffusion system

Collective (~10um2/s) Single molecule coefficient (~1um2/s)

D~20um2/s in all cases 



The intuitive explanation of effective diffusion is “easy” for Dt:
Given it is

and gives Dt which is 

If one tries to follow many particles the situation is different: they 
all compete for the traps, they are not all independent.

for DS=0

It is “easy” when one follows a single particle which does not affect 
the concentration of the traps S (which remains equal to Seq).  
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Some intuition for the case with DS=0
correspond to:Both

and Du with a “dressed” tb: 
                tb=1/(ST koff/Seq)

But Dt with: tf=1/konSeq 
                    tb=1/koff

As the small perturbation spreads out, some particles 
that were already bound to traps start to be released 
increasing the rate of spread. This does not happen if 
the initial perturbation can be distinguished from those 
previously trapped. The rate of spread is solely 
determined by the added particles

Let us think of a pipe with its contents in equilibrium and focus at a piece of 
length λ located at x=0. At t=0, we add some colored particles at x=-λ. At t=Δt, 
the piece at x=0 receives some colored, Nc(Δt) and some uncolored particles, 
Nu(Δt). If they are all free, Nc(Δt) =α Nc(−λ,0)  and Nu(Δt)=α Nu(−λ,0). If there are 
reactions, the added particles will induce a release of bound particles which are 
initially all uncolored. Some added particles will become bound. Thus, Nc(Δt) =α 
Nc(−λ,0)  and Nu(Δt)=α’Nu(−λ,0) with α’>α which implies that Nc(Δt)+Nu(Δt) > α 
(Nc(−λ,0)  + Nu(−λ,0)). Thus, all the particles diffuse faster than the colored ones.

and



How different between themselves can Dt and Du be? 
A lot! Example with DS = 0

They are approximately equal for Pfeq<< KD  y >> Pfeq>> KD, ST
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Their ratio can be arbitrarily small for large Seq/KD and small Seq/ST.

Solid:         Seq/KD = .1 
Dashed:    Seq/KD = .3 
Dotted:      Seq/KD = 9

So, we have one diffusion coefficient, Dt,  ruling the mean square displacement 
and another one, Du, ruling the rate of spread of a perturbation in the 
concentration (if particles are distinguishable it’s Dt instead!). Something similar 
happens in non-ideal solutions, i.e., with polymers. 



      The messages diffuse faster than the messengers

Once the protein is fluorescently labeled, 
a region is photobleached (fluorescence 
is turned off). Fluorescence in that region 
recovers when new fluorescent proteins 
enter the region. The diffusion coefficient, 
D, is determined from the time it takes for 
the fluorescence to recover. 

It is used mainly to determine the diffusion of fluorescently 
labeled proteins.

1. Fluorescence Recovery after Photobleaching (FRAP)

What happens with the optical techniques that are used to 
estimate diffusion coefficients of biomolecules in intact cells? 

In the case of RD systems it gives the 
single molecule coefficient (Sprague et 
al, 2004). 

Thus:



FCS – Fluorescence Correlation Spectroscopy
FCS measures fluorescence fluctuations in an observation volume of the order of 1 fl. 

The autocorrelation function (ACF) of the fluorescence fluctuations is computed. 

Example: free 
diffusion of a 
single species

Fitting the ACF the diffusion coefficient can be 
estimated from the correlation time. For one species:

Solution 50 nM TMR-Dex in water.

Vef y ωr  are geometric parameters that are determined from a calibration.

with



In Sigaut et al, 2010, we derived analytic expressions for the 
ACF, G(τ), that correspond to different biophysical models. In 
the case in which all particles are fluorescent we found, in the 
limit of fast reactions:

What about RD systems?

With:

Remarkably, if we assumed that both fluorescent and non-
fluorescent particles coexisted in the system we got:

With:



A problem where this difference is relevant.

In embryogenesis there are “morphogens” that determine the fate 
of otherwise undifferentiated cells depending on their position. 
Morphogen gradients are key for cellular differentiation. 

A case studied in great detail is that of 
the establishment of the dorso-ventral 
axis in embryos of Drosophila where the 
protein, Bcd, acts as a transcription 
factor. 

Diffusion plays a fundamental role for the establishment of 
spatial structures (patterns) in living organisms. 



Embryo drawings (A-C) and SEM images (D-F).  
Two hours after deposition segmentation is not 
visible, but there is already a “map” that 
determines the subsequent fate.

Molecular Biology of the Cell. 3rd 
edition. 
Alberts B, Bray D, Lewis J, et al.

Synopsis of the development 
from the egg through the 
formation of an adult fly. 

There is an asymmetry in the egg. The positional 
information is provided by 4 gradients that are 
established by 4 gene groups.  



During the development of the egg, before it is fertilized, 
there is a non-uniform distribution of mRNA molecules.
There is a maternal gene, bicoid, which is mainly concentrated in 
the anterior end of the embryo. The protein encoded by this gene 
also displays a non-uniform distribution in the embryo.

Bicoid is a transcription factor (a protein that participates of 
the regulation of DNA transcription). In particular, it promotes 
the transcription of another maternal gene, hunchback.



Using embryos that express Bcd-GFP Gregor et al determined 
that the Bicoid gradient is established within 90 minutes after 
fertilization and remains stable along several nuclear divisions. 
Bcd-GFP expressing embryos. (A) Nuclear cycle 12 at 30 
µm (top), 60 µm (middle), and 90 µm (bottom)  from the 
surface. (Bar 100 µm) (B) Each image corresponds to an 
instant during the interphases 9-14. (C) Images start 20 ± 
15 min after egg deposition. (Gregor et al, Cell 2007)

(A) Two nuclei during interphase (B) Same region as in (A) but during mitosis. (C) 
Intensity profile during interphase.(D) Bcd-GFP in nuclei and in cytoplasm.(E) Intensity 
peak in a nucleus during cycle n as a function of the peak during cycle n+1 (Gregor et al, 
Cell 2007) 



Drosophila embryo expressing 
Bcd-GFP (Gregor et al., 2007); 
scale 50µm.(B) Blue & red: 
Apparent concentrations in 
each nucleus. 

A possible model to explain the gradient 
formation of the product of bicoid assumes 
Bcd is produced at the anterior end, it then 
diffuses and is degraded.    
The Bcd diffusion coefficient affects the time 
and spatial scales of the gradient. Thus, it is 
important to estimate its value.
FRAP and FCS were used to this end giving 
estimates of the diffusion coefficient that 
differ by an order of magnitude. The FRAP 
diffusion coefficient was too small to explain 
the formation of the gradient within the 
observed timescale.  Our explanation
The apparently contradictory results may be explained 
within a single model by considering that Bcd diffuses and 
reacts with other substances and that FRAP and FCS 
provide effective coefficients. 



Recovery curve, D = 0.27 ± 0.07 µm2/s. 
This value is too small to explain the formation of the Bcd 
gradient within 90 minutes of fertilization. 

The application of FRAP and FCS to the case of Bcd. 

Gregor et al, 2007, did FRAP experiments to determine the 
diffusion of Bcd.



Normalized ACF’s for Bcd-EGFP and NLS-
EGFP in the cortical cytoplasm during the 
interphase of cycles 12-14. Blue: Expected 
functions in the case of a single diffusing 
species for different values of D.

Abu-Arish et al, 2010 did FCS experiments to determine the 
diffusion coefficient of Bcd. 

They tried various fittings to the 
ACF. The best ones were of the 
form:

Doing:

They obtained:

They argued there was a technical problem to explain the 
discrepancy between FRAP and FCS (they did FRAP too and 
obtained D~1um2/s).



Relevant equations for FRAP (all 
particles in a region are initially marked)

Equations for a small perturbation with 
respect to equilibrium.

The math

FRAP, FCS and Bicoid:
FRAP

Effective diffusion is Dt Effective diffusion is Du.  
Dt can be inferred if fluorescent and 
non-fluorescent particles coexist in 
FCS. Bicoid

DFRAP = 0.3-1um2/s DFCS various diffusing components: 
14, 1.6,  0.095 um2/s

In FRAP the fluorescence is bleached 
in a small region. Fluorescence 
recovers because fluorescent 
particles enter this bleached region. 

FCS
In FCS all particles are fluorescent. 
Fluorescence fluctuations in a volume, V, 
are monitored. Fluctuations occur 
because particles enter and leave V.



Our explanation (Sigaut et al, PLoS Comp Biol 2014)

Bcd diffuses and reacts with slowly moving or immobile binding 
sites. Applying our theory on effective diffusion coefficients (and 
which one is measured by different experimental techniques) we 
can explain the difference between the estimates of the 
diffusion coefficient derived using FRAP and FCS.

In fact, we have considered the simplest model with Bcd 
diffusing and interacting with a single type of traps, S:. 

Reaction scheme:

Reaction Diffusion eqs: 



which has the same time dependence as the expression used by 
Abu-Arish et al to fit their experimental ACF: 

where S and bound Bcd diffuse with DS, and free Bcd with Df.

We interpret the fitting parameters of 
Abu-Arish et al in terms of our analytic 
expression and estimate the biophysical 
parameters of the problem. 

Let us analyze FCS for Bcd assuming diffusion and reactions.

We have:

Then, the ACF is (in the limit of fast reactions):



Fitting parameters of the experimental ACF derived from FCS experiments 
performed in the cytoplasm during interphase at the anterior end of Bcd-

EGFP expressing Drosophila embryos (Abu Arish et al, 2010)

3-component fitting parameters

D1 F1

D2 F2

D3 F3

2-component fitting parameters

D1 F1

D2 F2

Abu- Arish et al 2010

Our interpretation

Our interpretation

Perfectly compatible with 
the FRAP estimate:

Detail: FCS during 
interphase and FRAP during 
mitosis



  Cytoplasm, 
Interphase

Cytoplasm, 
Mitosis

S/Bcd 0.03 0.05

Bcd 0.92 1.14

Bcd 0.08 0.06

Bcd 1 1.2

S 0.95 1.19

K 0.0026 0.0026

Assuming that Df, DS (~0-0.1um2/s) and KD have the same values 
for all the conditions probed in the experiments we can describe the 
FCS and FRAP results self-consistently. Using our analytic 
expressions for Du and Dt we derive the ratios of all concentrations 
and of KD for the various conditions probed:

From FCS experiments performed using a freely-diffusing analogue 
of Bcd (NLS-EGFP) we estimate the free coefficient, Df~20 um2/s 



Effective diffusion coefficients as functions of the total Bcd 
concentration (normalized to the FCS situation) for 2 uniform trap 
concentrations: ST=STFCS (interph) and ST=STFRAP(mitosis).

Given these biophysical parameters, by how much could 
the effective diffusion coefficients vary with [Bcd]T?

A quick reminder:

How to validate our model?



Effective diffusion coefficients and concentration of fluorescent Bcd 
as functions of the distance to the location of FCS experiments. 
This gives a hint for future experiments.

Given that [Bcd]T depends exponentially on position, how does 
this translate with positional variation in the embryo?



How fast Bcd diffuses is key to establish the characteristic 
timescale of two key processes:

What can we say about these two aspects (that had been 
previously analyzed using the FRAP estimate of Bcd’s diffusion 
coefficient?

So, we can explain the apparently contradictory measurements of 
the Bcd diffusion coefficient within a single model. 
And we have estimates of the free diffusion coefficients of Bcd, 
Df~20 um2/s, of its traps, DS (~0-0.1um2/s), of the ratio of the 
various concentrations and the dissociation constant so that we can 
estimate how fast Bcd diffuses everywhere. 

• The time it takes for the gradient of Bcd to be formed. 
• The time it takes for the sites on DNA involved in the transcription of 

certain genes (which are regulated by Bcd) to “read” [Bcd] with a 
certain precision. In fact, Bcd is a transcription factor and as such it 
regulates the transcription of different genes, among them, 
hunchback. The non-uniform distribution of Bcd then results in a 
non-uniform pattern of expression of hb, i.e., Bcd is a morphogen. 



Our model includes reactions so it is nonlinear. Thus, it is not so 
straightforward to tell. In principle, we think it is the collective 
diffusion coefficient (Dcoll>Dsm) the one that determines the time-
scale of formation (more on this later).

About the first point, can our RD model explain the formation of the 
Bcd gradient during the observed timescale?

Here I will focus on the first of this issue (for the second, let me say 
that it is the free diffusion coefficient the one that sets the timescale 
for the read-out precision limit). 

We decided to solve the full reaction-diffusion system (an SDID 
model) and see. 

But the collective diffusion coefficient is concentration dependent,                                      
                           
!
Therefore, it varies with position: which value should we consider?



We tried several alternative models, with Bcd degradation only in its 
free form or in both its free and bound forms and with and without a 
transformation (during the timescale of the simulation) of Bcd from 
being non-fluorescent to being fluorescent.  

They more or less give similar 
results (although for different 
numerical parameters).  
Let me mainly focus on the 
simplest one. Solved on a cylindrical domain with no 

flux boundary conditions, assuming 
only dependence with z, 0<z<L. 
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[BcdT] (solid), [Bcd] (dashed), [S] (dashed-dotted), [Bcdb] (dotted) vs z at t=100min 
obtained from simulations of the SDID model with “partial” (a) and “total” (b) 
degradation.  
Parameters:  

in (a) , in (b) . 

Bcd distributions obtained with the SDID model at the time at which the 
experiments indicate that the gradient is already established.    
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[BcdT] and [Bcd] vs z for various times. The differences with respect to the 
distribution at t=100min are shown in (b). Most of them are less than 10%

SDID model with “partial” degradation: time of convergence of the solution   

The SDID model with the diffusion coefficients determined in Sigaut et al, 
2014 predicts that the gradient is relatively established by 100min for 
reasonable values of the degradation rate. 
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Some analytic derivations for the SDID (nonlinear model) assuming 
DS=0 and that reactions occur on a fast timescale.

This equation for Bcd is similar 
to that of the linear SDD model:
that has a solution 
that decays in 
space with:

But the observed fluorescence corresponds to BcdT=Bcdb+Bcdf, not 
Bcdf. We define:                                    and obtain:

and “travels” with:

with:

The approximate evolution equation is:

Thus, we approximate the length 
scale of  the Bcd gradient in the 
SDID model by: which is independent of z and t.

which time of convergence is:

For v and tconv(z) of the Bcd 
distribution we obtain:



The SDD model:
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What happens if we use the length-scale, lo, and formation time-
scale, to, of the observed gradient to infer which value the Bcd 
diffusion coefficient should take on to explain the observations.

The SDID model:



The diffusion of biomolecules plays a relevant role for the 
transport of information inside cells. 

Anyway, the net resulting transport that occurs over long times 
can be described by effective diffusion coefficients. 

Summary

Most often, biomolecules do not diffuse freely inside cells but 
also react with binding sites (which introduces nonlinearities).

In Pando et al 2006 we showed that two different effective diffusion 
coefficients, Dt and Du,  can describe the dynamics depending on the 
situation. 

They are both weighted averages of the particles, Df,  and the traps, 
DS,  free diffusion coefficients but they can have arbitrarily different 
numerical values. 

Collective Single molecule



Diffusion rates in cells can be estimated experimentally using 
optical techniques and fluorescently tagged biomolecules. Two 
widely used techniques are FRAP and FCS. 

In FRAP fluorescent and non-fluorescent versions of the 
molecules of interest coexist and the technique estimates Dt.  

In Sigaut et al 2010 we compared which effective coefficients can 
be estimated with them when the biomolecules diffuse and react 
with non-fluorescent “traps”. 

FCS gives the free trap diffusion coefficient, DS, and Du if  only 
the fluorescent version of the particles is present and it gives 
Dt as well if non-fluorescent particles are present too.



We also estimated other biophysical parameters. 

FRAP and FCS experiments were performed in Drosophila 
embryos to estimate the diffusion of the morphogen Bcd 
obtaining values that differ by an order of magnitude.  

We used a simple biophysical model (with Bcd and traps) to 
obtain a mechanistic interpretation of the parameters derived 
with both experimental techniques.  We could explain all the 
results within a comprehensive framework reconciling, as well, 
the diffusion coefficient estimate and the time it takes for the 
gradient to be formed.  

The gradient of Bcd is key for the formation of the dorso-ventral axis in 
flies. The low diffusion coefficient estimated with FRAP could not 
account for the gradient formation within the observed times 



An important aspect of our SDID model is that the observed 
fluorescence does not correspond to Bcd, but to BcdT. 

Inferring parameters assuming that it corresponds to free 
Bcd can lead to erroneous estimates. 

Using the biophysical parameters determined in Sigaut et al we 
simulated an extended version of the SDD model for the 
formation of the Bcd gradient (the SDID model) which includes 
reactions with binding sites. 

We probed different variations of the model and obtained 
distributions that compare relatively well with the experimental 
observations using reasonable parameters for the Bcd 
degradation and production. 

In particular, assuming that the length-scale of the observed 
gradient is related to the free diffusion coefficient of Bcd 
may lead to its over-estimation. 



Thank you!
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