Higgs and Flavor Physics supplementary slides

First Joint ICTP-Trieste/ICTP-SAIFR School on Particle Physics 2018 Benjamín Grinstein

Problem 2: Schedule of lectures?

For many like these see http://ckmfitter.in2p3.fr/www/results/plots_ichep16/ckm_res_ichep16.html

Fat

Skinny

Flavor Physics: an important constraint on all new BSM models

[Neubert, EPS2011]

Generic bounds without a flavor symmetry

TASI Exercise: from these determine bounds with MFV assumption

Only angles (CPV asymmetries) 0.7 CKM. sin 28 an mine di ad 0

Fig. 1. The charge asymmetry as a function of the reconstructed decay time τ' for the K_{e3} decays. The experimental data are compared to the best fit as indicated by the solid line.

S. Gjesdal, et al, Phys.Lett. B52 (1974) 113

7

This is B^0

41

FIG. 25: Time-dependent asymmetry $\mathcal{A}(\Delta t)$ between unmixed and mixed events for hadronic *B* candidates with $m_{\rm ES} > 5.27 \,\text{GeV}/c^2$, a) as a function of Δt ; and b) folded as a function of $|\Delta t|$. The asymmetry in a) is due to the fitted bias in the Δt resolution function.

Babar, arXiv.org > hep-ex > arXiv:hep-ex/0201020

This is Bs

VV

W

 q_i

91

Gold plated examples: $b \rightarrow c\bar{c}s$

$\sin(2\beta) \equiv \sin(2\phi_1) \frac{\text{HFLAV}}{\text{Moriond 2018}}$		
BaBar PRD 79 (2009) 072009		0.69 ± 0.03 ± 0.01
BaBar χ_ K_ PRD 80 (2009) 112001	,	0.69 ± 0.52 ± 0.04 ± 0.07
BaBar J/ψ (hadronic) K _S PRD 69 (2004):052001		H 1,56 ± 0.42 ± 0.21
Belle PRL 108 (2012) 171802	,	$0.67 \pm 0.02 \pm 0.01$
ALEPH PLB 492, 259 (2000)		0.84 ^{+0.82} ± 0.16
OPAL EPJ C5, 379 (1998)		3.20 ^{+1.80} ± 0.50
CDF PRD 61, 072005 (2000)	Ц	* 0.79 ^{+0.41}
LHCb JHEP 11 (2017) 170		H 0.76 ± 0.03
Belle5S PRL 108 (2012) 171801	*	0.57 ± 0.58 ± 0.06
Average HFLAV		0.70 ± 0.02
-2 -1	0	1 2 3

I2

Ballar

Belle

0.8

Average

BaBar part. rec

(0.65±0.36±0.05)x10⁰

PRD79.032002(2009)

 $\substack{(1.06^{+0.14}\pm0.08) \times 10^{0} \\ \mathsf{PRD85,0911106(2012)} }$

(0.68±0.15±0.04)x10⁰ PRD79,032002(2009)

(0.78±0.15±0.05)x10⁰

(0.71±0.16±0.03)x10⁰ PRD79,032002(2009

(0.79±0.13±0.03)x10⁰

EPS2011 preliminary

 $(0.49\pm0.18\pm0.08)x10^{0}$

 $(0.73\pm0.11)\times10^{0}$

 $(0.77 \pm 0.10) \times 10^{0}$

new ICHEP2012

PRD85,0911106(2012)

(0.98±0.17)x10⁰