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Introduction to quantum computation and simulability

Outline:

•  Intro: Intermediate models of quantum computation

•  Postselected circuits and hardness of simulation

•  IQP circuits are hard to simulate

•  The one-clean-qubit (DQC-1) model and variations

•  Entanglement as a resource in the circuit model

•  Connections between different restricted QC models

•  For slides and links to related material, see

Lecture 10 : Intermediate models of quantum computation



Two notions of classical simulation

Given a quantum process (e.g. a circuit), input states and choice of output qubits to be measured, 
we can talk about two different notions of simulability:

1.  Strong classical simulation:
•  compute probabilities of output outcomes.

2.  Weak classical simulation:
•  output sample of output outcomes.

Examples we’ve seen:

•  computational basis input+measurement, Clifford circuit: strongly simulable

•  separable input+measurement, Clifford circuit: not simulable at all (universal for QC)

more reasonable than
demanding strong simulation

Also important – how does the error scale? Assume n qubits, poly(n) repetitions

•  Experimentally: estimates of probabilities with 1/poly(n) error

•  Simulation:  we’d like error to scale like the experimental one, i.e. 1/poly(n) error.



Post-selection and hardness of simulation
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•  Recalling Daniel’s lecture:

PostBQP

If post-selected restricted model = PostBQP then restricted model can’t be (weakly) 
simulated exactly, unless Polynomial Hierarchy collapses (considered highly unlikely)
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Post-selection and hardness of simulation

If post-selected restricted model = PostBQP then restricted model can’t be (weakly) 
simulated exactly, unless Polynomial Hierarchy collapses (considered highly unlikely)

•  Restricted models shown to be hard to simulate using this recipe:

• Quantum circuits of depth 3
•  IQP (commuting quantum circuits)
•  version of DQC1
• Boson Sampling

[Terhal, DiVincenzo, quant-ph/020513]



IQP: commuting gates
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IQP: circuits with commuting gates

•  The complexity class IQP was initially studied by Shepherd, Bremner, and Jozsa

•  Initialization and measurement in computational basis, but only commuting gates (in X 
basis)

• Temporal order of gates irrelevant; strong restriction on computational power
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•  Proving IQP circuits are hard to simulate…

[Shepherd, Bremner, Proc. R. Soc. London A 465, 1413 (2009)]
[Bremner, Jozsa, Shepherd, Proc. R. Soc. London A 467, 459 (2011) ]



IQP is hard to simulate

•  Take general circuit using universal gate-set
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•  Add identities HH=I so that circuit is in the form:

H,Z,CZ,T{ }
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{Z,CZ,T,H}

!U
{Z,CZ,T,H}

•  Substitute H-gadget for each H in U’:

Resulting circuit is in IQP format, and with 
post-selection does PostBQP

IQP must be hard to simulate 
classically

[Bremner, Jozsa, Shepherd, Proc. R. Soc. London A 467, 459 (2011) ]



IQP is hard to simulate

•   Even approximate weak simulation unlikely, due to connection of IQP circuits with two 
other problems which are considered hard:

• Calculation of partition functions of random instances of the Ising model
• Approximation of gap of degree-3 polynomials over F2

[Bremner, Montanaro, Shepherd, arXiv:1504.07999 ]
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DQC1, or “one-clean-qubit” model

•  Inspired by NMR QC, Knill and Laflamme proposed the “one-clean-qubit model”, by changing 
the input of a general circuit:
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•  Problem is encoded in U’s gate decomposition – measurements must reveal some property 
of U

•  DQC1 = class of problems solvable in poly(n) time, with high probability

•  DQC1 circuits are good for estimating traces of unitaries. This is done via the Hadamard test:
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•             measurements estimate 

•  similar scheme estimates 

O(1 /ε 2 ) Re ψ U ψ( )

Im ψ U ψ( )

[Knill, Laflamme, PRL 81, 5672 (1998)]



DQC1, or “one-clean-qubit” model
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•  U is exp(n)-size – hence difficulty in estimating trace on a classical computer

•  A “collapse of PH” argument shows DQC1 can’t be simulated exactly (under this plausible 
assumption)
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•  random input in computational 
basis state

      = picking input I
2n

•  What’s DQC1 good for?

• Knot theory: estimating Jones polynomials

• Testing for integrability of U

• Average fidelity decay

[Fujii et al., arxiv:1409.6777]

[Shor, Jordan, QIC 8, 681 (2008)]

[Poulin et al., PRA 68, 22302 (2003)]

[Poulin et al., PRL 92, 177906 (2004)]



DQC1, or “one-clean-qubit” model
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•  Where does the quantum advantage come from?

• Partitions reveal small amount of entanglement (doesn’t increase with n)
• Little entanglement but large Schmidt rank – simulation not possible with MPS scheme
• Role of quantum discord in model? 



How much entanglement is necessary?

•  Some entanglement is necessary in pure-state quantum computation
  [Jozsa, Linden, Proc. R. Soc. London A 459,(2036), 2011 (2003)]

•  But how much? Very small entropy of entanglement across all bipartitions is sufficient:
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•  After t gates of (controlled) U: 

•  State always close to                , but q (and p) can be estimated with poly(n) runs 

•  By continuity of entropy of entanglement, 1/poly(n) amount of entanglement at each run

•  Large “integrated” entanglement over all runs, however, seems to be necessary

ψt = 1−ε 0 n
⊗ 0 + ε Ut 0

n( )⊗ 1

0 n
⊗ 0

[Van den Nest, PRL 110, 060504 (2013)]



So what is necessary/sufficient for quantum speed-up?

•  Dynamics / input states / measurements
•  a combination of dynamics, input states and measurements defines the computational 

capacity of model.
•  some resource trade-offs possible (e.g. Clifford + magic states)

•  Entanglement:
• not sufficient (e.g. Clifford circuits)
•  some is necessary (Jozsa, Linden)
• but not much is necessary (DQC1, Van den Nest’s scheme for general BQP)
• depends on which measure (entropy of entanglement versus Schmidt rank)
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Time ordering in quantum computation: ���
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- superposition of causal orders���
���

- simulated closed time-like curves



Computational resource: superposition of causal orders

•  It’s possible to imagine superposing different orders of operations:

Procopio et al., arXiv:1412.4006

•  This can be achieved using an interferometer (but not a circuit):

•  Based on theoretical work by Chiribella (2012).



PCTCs: a model based on teleportation and post-selection

•  Bennett and Schumacher, unpublished (2002) – see seminar http://bit.ly/crs8Lb
•  Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v1

- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004) 
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CTC Simulation using teleportation and post-selection: B’=C

•  We post-select projections onto 

-  Postselection successful: state B’ is teleported back in time (state C = state B’)
-  Simulation works only when post-selection happens -> finite probability of 

success. 
€ 
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