Population Genetics and Evolution - III

The Mechanisms of Evolution: Drift

São Paulo / January 2019
SMRI (Italy)
luca@peliti.org

Drift

The Population Genetics Triad

Sewall Wright

Ronald A. Fisher

Motoo Kimura

Finite population

The Wright-Fisher model

- Population size N, number n_{k} of individuals of type k, $k=1, \ldots, r$, with fitness w_{k}
- Nonoverlapping generations
- Given the composition vector $\boldsymbol{x}=\left(x_{i}\right), x_{i}=n_{i} / N$, the numbers n_{k}^{\prime} in the next generation are distributed according to

$$
\operatorname{Prob}\left(n_{1}^{\prime}, \ldots, n_{r}^{\prime}\right)=\frac{N!}{n_{1}^{\prime}!\cdots n_{r}^{\prime}!} \xi_{1}^{n_{1}^{\prime}} \cdots \xi_{r}^{n_{r}^{\prime}}
$$

where

$$
\xi_{k}=\frac{x_{k} w_{k}}{\sum_{j} x_{j} w_{j}}
$$

- Thus n_{k}^{\prime} is approximately distributed as a Gaussian with mean $N \xi_{k}$ and variance $N \xi_{k}\left(1-\xi_{k}\right)$

Finite population

The Wright-Fisher model

Finite population

The Wright-Fisher model: one realization (neutral)

Finite population

The Wright-Fisher model: several realizations (neutral)

Finite population

The Wright-Fisher model: one realization (selective: $N=10000$, $\left.w_{k} \in\{1.0,1.1\}, x_{k}(0)=0.1\right)$

Finite population

The Wright-Fisher model: several realizations (selective: $N=500$, $s=0.01, x(0)=0.1$)

Fixation in 5 cases out of 10

Drift

...it is often convenient to consider a natural population not so much as an aggregate of living individuals as an aggregate of gene ratios. Such a change of viewpoint is similar to that familiar in the theory of gases...
R. A. Fisher, 1953

Drift

We will start our discussion from the simplest situation where the gene frequency fluctuates from generation to generation because of the random sampling of gametes in a finite population. Since Wright's work, the term drift has become quite popular among biologists. However, in the mathematical theory of Brownian motion, the term drift originally connotes directional movement of the particle; therefore in our context the adjective random should be attached to it.
M. Kimura, 1964 (abridged)

Drift

- Finite population implies different outcomes for different experiments in the same conditions (lack of self-averaging)
- Necessity to describe an ensemble of populations
- Use of the theory of Markov processes
- Simplification by means of diffusion equations

Random drift in the neutral case

- Population of N haploid individuals, 2 neutral alleles: A, a
- Frequency of the A allele: $x=n_{\mathrm{A}} / N$
- Wright-Fisher model: At each time step, each individual i of the new generation picks up a parent at random and copies it

Random drift in the neutral case

The Wright-Fisher model

Random drift in the neutral case

- Probability that $n_{\mathrm{A}}(t+1)=n$, given $n_{\mathrm{A}}(t)=N x(t)$:

$$
p_{n}(t+1)=\binom{N}{n}(x(t))^{n}(1-x(t))^{N-n}
$$

- Assume $N \gg 1, \frac{1}{N} \ll x \ll 1-\frac{1}{N}$, then

$$
\operatorname{Prob}(x(t+1)=x) \propto \exp \left(-\frac{(x-x(t))^{2}}{2 N x(t)(1-x(t))}\right)
$$

- $\Delta x(t)=x(t+1)-x(t):$

$$
\langle\Delta x(t)\rangle=0 \quad\left\langle(\Delta x(t))^{2}\right\rangle=\frac{x(t)(1-x(t))}{N}
$$

The diffusion equation

Fokker-Planck equation:

$$
\frac{\partial}{\partial t} p(x, t)=-\frac{\partial}{\partial x}\left(\langle\Delta x\rangle_{x} p(x, t)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\left\langle\Delta x^{2}\right\rangle_{x} p(x, t)\right)
$$

In our case

$$
\frac{\partial p}{\partial t}=\frac{1}{2 N} \frac{\partial^{2}}{\partial x^{2}}(x(1-x) p(x, t))
$$

The solution in the neutral case

- Set $p\left(x, t \mid x_{0}, 0\right)=\sum_{n} c_{n}\left(x_{0}\right) \chi_{n}(x) \mathrm{e}^{-\lambda_{n} t /(2 N)}$
- Eigenvalue equation:

$$
x(1-x) \chi_{n}^{\prime \prime}(x)+(1-2 x) \chi_{n}^{\prime}(x)+\lambda_{n} \chi_{n}(x)=0
$$

- Boundary conditions: $x=0,1$ are singular points; we require $\chi_{n}(0,1)$ finite $\forall n$
- Initial condition:

$$
p\left(x, 0 \mid x_{0}, 0\right)=\sum_{n} c_{n}\left(x_{0}\right) \chi_{n}(x)=\delta\left(x-x_{0}\right)
$$

- Solution in terms of hypergeometric functions:

$$
\chi_{n}(x)=F(1-n, n+2,2, x) \quad \lambda_{n}=n(n+1)
$$

The solution in the neutral case

Initial condition $x(0)=0.1$

$$
t=0.05 N
$$

Initial condition $x(0)=0.1$

$$
t=0.1 \mathrm{~N}
$$

Initial condition $x(0)=0.1$

$$
t=0.2 N
$$

Initial condition $x(0)=0.1$

[^0]Initial condition $x(0)=0.1$

Initial condition $x(0)=0.1$

$t=1.5 N$

Results

- $p(x, t)$ decays exponentially: $p(x, t) \simeq 6 x(0)(1-x(0)) \mathrm{e}^{-t / N}$ for $t \gg N$
- Probability that A and a coexist at generation t : $\Omega(t)=\int_{0}^{1} \mathrm{~d} x p(x, t)$ decays with the same rate ($p(x, t)$ is flat)
- However, $p(x, t)$ becomes flat later when $x(0) \neq \frac{1}{2}$
- What is the probability of fixation of allele A as a function of $x(0)$?

The backward equation

- $p\left(x, t \mid x_{0}, t_{0}\right)$: Conditional probability that $x(t)=x$ given that $x\left(t_{0}\right)=x_{0}$
- Consider the effect of a single-generation sampling near t_{0} : $x\left(t_{0}+1\right)=x_{0}+\Delta x_{0}$
- Equation for $p\left(x, t \mid x_{0}, t_{0}\right)$:

$$
-\frac{\partial p}{\partial t_{0}}=\left\langle\Delta x_{0}\right\rangle_{x_{0}} \frac{\partial p}{\partial x_{0}}+\frac{1}{2}\left\langle\Delta x_{0}^{2}\right\rangle_{x_{0}} \frac{\partial^{2} p}{\partial x_{0}^{2}}
$$

- In our case

$$
-\frac{\partial p}{\partial t_{0}}=\frac{x_{0}\left(1-x_{0}\right)}{2 N} \frac{\partial^{2} p}{\partial x_{0}^{2}}
$$

The fixation probability

- $P\left(t, x_{0}, t_{0}\right)=p\left(1, t \mid x_{0}, t_{0}\right)$: probability of being fixed by time t
- "Ultimate" fixation probability: $p^{\text {fix }}\left(x_{0}\right)=\lim _{t \rightarrow \infty} P\left(t, x_{0}, t_{0}\right)$
- From the backward equation we obtain

$$
\frac{\mathrm{d}^{2} p^{\mathrm{fix}}}{\mathrm{~d} x_{0}^{2}}=0 \quad x \in[0,1]
$$

- Boundary conditions: $p^{\mathrm{fix}}\left(x_{0}=0\right)=0$ and $p^{\mathrm{fix}}\left(x_{0}=1\right)$
- Solution:

$$
p^{\mathrm{fix}}\left(x_{0}\right)=x_{0}
$$

Wright-Fisher model with selection

- Population of N haploid individuals, two alleles A and a
- Fitnesses: $w_{\mathrm{A}}, w_{\mathrm{a}}$
- Probability that an individual with allele A is chosen as a parent:

$$
\xi_{\mathrm{A}}=\frac{n_{\mathrm{A}} w_{\mathrm{A}}}{\sum_{j=1}^{N} w_{j}}=\frac{n_{\mathrm{A}} w_{\mathrm{A}}}{n_{\mathrm{A}} w_{\mathrm{A}}+n_{\mathrm{a}} w_{\mathrm{a}}}=\frac{x w_{\mathrm{A}}}{x w_{\mathrm{A}}+(1-x) w_{\mathrm{a}}}
$$

- Probability that $n_{\mathrm{A}}(t+1)=n$:

$$
p_{n}(t+1)=\binom{N}{n} \xi_{\mathrm{A}}^{n}\left(1-\xi_{\mathrm{A}}\right)^{N-n}
$$

- Average and variance:

$$
\begin{aligned}
\left\langle x_{\mathrm{A}}(t+1)\right\rangle & =\xi_{\mathrm{A}} \\
\left\langle\left(x_{\mathrm{A}}(t+1)-\left\langle x_{\mathrm{A}}(t+1)\right\rangle\right)^{2}\right\rangle & =\xi_{\mathrm{A}}\left(1-\xi_{\mathrm{A}}\right) / N
\end{aligned}
$$

Selection and drift

If the first human infant with a gene for levitation were struck by lightning in its pram, this would not prove the new genotype to have low fitness, but only that the particular child was unlucky.

John Maynard Smith

Selection and drift

- Set $w_{\mathrm{A}}=1+s, w_{\mathrm{a}}=1, s \ll 1$
- Then $\xi_{\mathrm{A}}=x w_{\mathrm{A}} /\left(x w_{\mathrm{A}}+w_{\mathrm{a}}(1-x)\right)=(1+s) x /(1+s x)$
- Then $\langle\Delta x\rangle_{x}=\langle x(t+1)\rangle-x=s x(1-x) /(1+s x) \simeq s x(1-x)$ and $\left\langle\Delta x^{2}\right\rangle \simeq(x(1-x) / N)$
- Diffusion equation for $p(x, t)$:

$$
\frac{\partial p}{\partial t}=-s \frac{\partial}{\partial x}(x(1-x) p)+\frac{1}{2 N} \frac{\partial^{2}}{\partial x^{2}}(x(1-x) p)
$$

- Solution in terms of spheroidal functions...
- Asymptotically $p(x, t) \propto \chi(x) \mathrm{e}^{-\lambda t / N}$

Solution with selection

The long-living eigenfunction:

The leading eigenfunction $\chi(x)$ for several values of s

Solution with selection

The decay rate:

Leading eigenvalue λ as a function of $N s$; decay rate: λ / N

The fixation probability with selection

- The backward equation:

$$
\frac{\partial p}{\partial t_{0}}=s x_{0}\left(1-x_{0}\right) \frac{\partial p}{\partial x_{0}}+\frac{x_{0}\left(1-x_{0}\right)}{2 N} \frac{\partial^{2} p}{\partial x_{0}^{2}}
$$

- Stationary solution:

$$
\begin{aligned}
\frac{\partial p^{\mathrm{fix}}}{\partial x_{0}} & =C_{1} \mathrm{e}^{-2 N s x_{0}} \\
p^{\mathrm{fix}}\left(x_{0}\right) & =C_{0}-C_{1} \mathrm{e}^{-2 N s x_{0}} \\
& =\frac{1-\mathrm{e}^{-2 N s x_{0}}}{1-\mathrm{e}^{-2 N s}}
\end{aligned}
$$

- In particular, for $s \rightarrow 0, p^{\mathrm{fix}} \rightarrow x_{0}$

The fixation probability with selection

Fixation probability of a single mutant

- For a single mutant $x_{0}=\frac{1}{N}$
- Thus

$$
p^{\mathrm{fix}}=\frac{1-\mathrm{e}^{-2 s}}{1-\mathrm{e}^{-2 N s}}
$$

- Limits:
- $s>0, N s \gg 1: p^{\mathrm{fix}} \simeq 1-\mathrm{e}^{-2 s}$ (for $s \ll 1, p^{\mathrm{fix}} \simeq 2 s$)
- $s<0,|N s| \gg 1, p^{\mathrm{fix}} \simeq 0$
- $|N s| \lesssim 1, p^{\mathrm{fix}} \simeq \frac{1}{N}$

Fixation probability of a single mutant

Frequency needed to obtain fixation

- How large must be x to be "almost sure" that a beneficial mutant fixes?
- Solve

$$
p^{\mathrm{fix}}\left(x^{*}\right)=1-\gamma
$$

- For $N s \gg 1$ we have $p^{\mathrm{fix}}(x) \simeq 1-\mathrm{e}^{-2 N s x}$, thus

$$
x^{*}=-\frac{\log \gamma}{2 N s} \quad \text { or } \quad n^{*}=-\frac{\log \gamma}{2 s}
$$

- The fate of the mutant is determined in its initial phase, where it undergoes a branching process-the size of N is irrelevant!

Substitution rate

- For a new mutant, $x_{0}=\frac{1}{N}$
- For a neutral mutant, $s=0$, thus $p^{\text {fix }}=x_{0}=\frac{1}{N}$
- If u is the mutation probability per genome and generation, the expected number of mutants per generations is $u N$
- Of these, only a fraction $\frac{1}{N}$ reaches fixation, i.e., produces a substitution
- Therefore the rate ν of neutral substitutions in a population with mutation rate u is equal to u :

$$
\text { substitution rate }=\text { mutation rate }
$$

independently of the population size N

The Moran model

Overlapping generations individual-based model:

Initial population

Select for death

Select for reproduction

Replace

The Moran model

- Selection: $p_{\text {kill }}(\mathrm{A})=1-s, p_{\text {kill }}(\mathrm{a})=1$
- $\Delta t=\frac{1}{N} ; \Delta n_{\mathrm{A}} \in\{-1,0,+1\}$
- Probabilities:

$$
\begin{aligned}
P_{-1} & =\underbrace{\frac{n_{\mathrm{a}}}{N}}_{\operatorname{Prob}_{\text {repr }}(a)} \underbrace{(1-s) \frac{n_{\mathrm{A}}}{N}}_{\operatorname{Prob}_{\text {kill }}(A)} \\
& =(1-s) x(1-x) \\
P_{+1} & =\frac{n_{\mathrm{A}}}{N} \frac{n_{\mathrm{a}}}{N}=x(1-x) \\
P_{0} & =1-\left(P_{+1}+P_{-1}\right)
\end{aligned}
$$

The Moran model

- Thus, for $\Delta t=\frac{1}{N}, s \ll 1$:

$$
\begin{aligned}
\left\langle\Delta n_{\mathrm{A}}\right\rangle & =P_{+1}-P_{-1}=s x(1-x) \\
\left\langle\left(\Delta n_{\mathrm{A}}\right)^{2}\right\rangle & =P_{+1}+P_{-1}=(2-s) x(1-x) \simeq 2 x(1-x)
\end{aligned}
$$

- The diffusion equation for the Moran model:

$$
\frac{\partial p}{\partial t}=-\frac{\partial}{\partial x}(s x(1-x) p)+\underbrace{\frac{1}{N}}_{=1 / 2 N \text { for } \mathrm{WF}} \frac{\partial^{2}}{\partial x^{2}}(x(1-x) p)
$$

- The devil (or God?) is in the details...

Adaptation and drift

Mustonen and Lässig, 2005-2010

Finite population of size N, r alleles, Moran model. Effects of mutation and selection:

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} x_{j}}{\mathrm{~d} t} & =\sum_{k} \Gamma_{j k} \frac{\partial \Phi}{\partial x_{k}} ;
\end{array} \quad \Phi=\langle f\rangle_{x}+\sum_{\alpha} \mu_{\alpha} \log x_{\alpha}\right\} \begin{array}{ll}
\Gamma_{j k}(\boldsymbol{x}) & =\left\{\begin{array}{ll}
-x_{j} x_{k}, & \text { if } j \neq k \\
x_{j}\left(1-x_{j}\right), & \text { if } j=k
\end{array} \quad \Gamma\right. \text { positive definite }
\end{array}
$$

Adaptation and drift

Mustonen and Lässig, 2005-2010

- Random drift: $\boldsymbol{x} \longrightarrow \boldsymbol{x}+\boldsymbol{\xi}$

$$
\left\langle\xi^{j}\right\rangle_{\boldsymbol{x}}=0 ; \quad\left\langle\xi^{j} \xi^{k}\right\rangle=2 \frac{\Gamma_{j k}(\boldsymbol{x})}{N}
$$

- Fokker-Planck equation for the pdf $P(\boldsymbol{x})$:

$$
\begin{aligned}
\frac{\partial P}{\partial t} & =\sum_{j k} \frac{\partial}{\partial x_{j}}\left[-\frac{\partial \Phi}{\partial x_{k}}\left(\Gamma_{j k} P\right)+\frac{1}{N} \frac{\partial}{\partial x_{k}}\left(\Gamma_{j k} P\right)\right] \\
& =\sum_{j k} \frac{\partial}{\partial x_{j}} \Gamma_{j k}\left(-\frac{\partial \tilde{\Phi}}{\partial x_{k}} P+\frac{1}{N} \frac{\partial P}{\partial x_{k}}\right)
\end{aligned}
$$

Adaptation and drift

Mustonen and Lässig, 2005-2010

- $\tilde{\Phi}=\Phi-\frac{1}{N} \log \operatorname{det} \Gamma ; \quad \operatorname{det} \Gamma=\prod_{\alpha} x_{\alpha}$
- Stationary solution:

$$
\begin{aligned}
P^{\mathrm{eq}}(\boldsymbol{x}) & \propto \mathrm{e}^{N \tilde{\Phi}}=(\operatorname{det} \Gamma)^{-1} \mathrm{e}^{N \Phi}=P_{0} \mathrm{e}^{N\langle f\rangle_{\boldsymbol{x}}} \\
P_{0}(\boldsymbol{x}) & \propto \prod_{\alpha} x^{-1+N \mu_{\alpha}}
\end{aligned}
$$

- Thus, for a static fitness function f,

$$
\begin{gather*}
{\left[N\langle f\rangle_{\boldsymbol{x}}\right]_{\mathrm{av}}^{\mathrm{eq}}=\int \mathrm{d} \boldsymbol{x} P^{\mathrm{eq}}(\boldsymbol{x}) \log \frac{P^{\mathrm{eq}}(\boldsymbol{x})}{P_{0}(\boldsymbol{x})}=\underbrace{D_{\mathrm{KL}}\left(P^{\mathrm{eq}} \| P_{0}\right)}_{\text {Kullback-Leibler divergence }}} \\
D_{\mathrm{KL}}(p \| q)=\sum_{k} p_{k} \log \frac{p_{k}}{q_{k}} \tag{1}
\end{gather*}
$$

cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

- Factor binding sites are short DNA sequences which bind activating factors
- Small mutation rates: $\mu N \ll 1 \Rightarrow$ Population becomes monomorphic $\left(x=\left(x_{\alpha}\right) \rightarrow \delta_{\alpha \beta}\right.$)

$$
p_{\beta}=\operatorname{Prob}\left(\boldsymbol{x}=\delta_{\alpha_{\beta}}\right) \propto \mathrm{e}^{N f_{\beta}}
$$

- It is reasonable to assume that their fitness depends on their binding energy E
- One can expect a linear model for $E(\sigma), \sigma=\left(\sigma_{1}, \ldots, \sigma_{\ell}\right)$, $\sigma_{i} \in\{\mathrm{~A}, \mathrm{~T}, \mathrm{G}, \mathrm{C}\}$

$$
E(\sigma)=\sum_{i=1}^{\ell} \epsilon_{i}\left(\sigma_{i}\right) \quad \text { with } \epsilon_{i}(\sigma)=\epsilon_{0} \log \frac{q_{i}(\sigma)}{p_{0}(\sigma)}
$$

$p_{0}(\sigma)$: background nucleotide frequency

cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

Log histogram $P(E)$ of binding energy E for 520729 CRP-binding loci in E. Coli. Compared with
$P(E)=(1-\lambda) P_{0}(E)+\lambda P_{0}(E) \mathrm{e}^{2 N F(E)}$. The inferred form of $2 N F(E)$ is also plotted. (W-F model)

Thank you!

References i

- G. H. Hardy, Mendelian proportions in a mixed population, Science 28 49-50 (1908)
- W. Weinberg, Über den Nachweis der Vererbung beim Menschen, Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 64 368-382 (1908)
- B. de Finetti, Considerazioni matematiche sull'ereditarietà mendeliana, Metron 6 29-37 (1926)
- John H. Gillespie, Population Genetics: A Concise Guide (2nd ed.) (Baltimore: Johns Hopkins Press, 2004)
- M. Eigen, Self-organization of matter and the evolution of biological macromolecules, Naturwissenschaften 58 465-523 (1973)

References ii

- C. O. Wilke, Quasispecies theory in the context of population genetics, BMC Evolutionary Biology 544 (2005)
- J. J. Bull and C. O. Wilke, Theory of Lethal Mutagenesis for Viruses, Journal of Virology 81 2930-2939 (2006)
- J. J. Bull and C. O. Wilke, Lethal Mutagenesis of Bacteria, Genetics 180 1061-1070 (2008)
- S. Crotty, C. E. Cameron and R. Andino, RNA virus error catastrophe: Direct molecular test by using ribavirin Proc. Natl. Acad. Sci. USA 986895 (2001)
- M. Kimura, The neutral theory of molecular evolution (Cambridge: Cambridge U. P., 1983)
- R. A. Fisher, The Genetical Theory of Natural Selection (Oxford: Clarendon Press, 1930)

References iii

- R. A. Fisher, Population genetics, Proc. Roy. Soc. London, Ser. B 141 510-523 (1953)
- S. Wright, Evolution in Mendelian populations, Genetics 16 97-159 (1931)
- M. Kimura, Diffusion models in population genetics, J. Appl. Prob. 1 177-232 (1964)
- J. Maynard Smith, Evolutionary Genetics (Oxford: Oxford U. P., 1989)
- P. A. P. Moran, Random processes in genetics, Mathematical Proceedings of the Cambridge Philosophical Society 54 60-71 (1958)
- T. Ohta, Population size and rate of evolution, J. Mol. Evol. 1 305-314 (1972)

References iv

- V. Mustonen and M. Lässig, From fitness landscapes to seascapes: Non-equilibrium dynamics of selection and adaptation, Trends Genet 25 111-119 (2009)
- V. Mustonen and M. Lässig, Fitness flux and ubiquity of adaptive evolution, Proc. Natl. Acad. Sci. USA 107 4248-4253 (2010)

[^0]: $t=0.5 N$

