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Finite population

The Wright-Fisher model

• Population size N , number nk of individuals of type k,
k = 1, . . . , r, with fitness wk

• Nonoverlapping generations
• Given the composition vector x = (xi), xi = ni/N , the numbers
n′
k in the next generation are distributed according to

Prob(n′
1, . . . , n

′
r) =

N !

n′
1! · · ·n′

r!
ξ
n′
1

1 · · · ξn
′
r

r

where
ξk =

xkwk∑
j xjwj

• Thus n′
k is approximately distributed as a Gaussian with mean

Nξk and variance Nξk(1− ξk)
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Finite population

The Wright-Fisher model
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Finite population

The Wright-Fisher model: one realization (neutral)

t

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

x
k

0

4



Finite population

The Wright-Fisher model: several realizations (neutral)
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Finite population

The Wright-Fisher model: one realization (selective: N = 10 000,
wk ∈ {1.0, 1.1}, xk(0) = 0.1)
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Finite population

The Wright-Fisher model: several realizations (selective: N = 500,
s = 0.01, x(0) = 0.1)
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Drift

…it is often convenient to consider a natural population
not so much as an aggregate of living individuals as an
aggregate of gene ratios. Such a change of viewpoint is
similar to that familiar in the theory of gases…

R. A. Fisher, 1953
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Drift

We will start our discussion from the simplest situation
where the gene frequency fluctuates from generation to
generation because of the random sampling of gametes in
a finite population. Since Wright’s work, the term drift
has become quite popular among biologists. However, in
the mathematical theory of Brownian motion, the term
drift originally connotes directional movement of the
particle; therefore in our context the adjective random
should be attached to it.

M. Kimura, 1964 (abridged)
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Drift

• Finite population implies different outcomes for different
experiments in the same conditions (lack of self-averaging)

• Necessity to describe an ensemble of populations
• Use of the theory of Markov processes
• Simplification by means of diffusion equations
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Random drift in the neutral case

• Population of N haploid individuals, 2 neutral alleles: A, a
• Frequency of the A allele: x = nA/N

• Wright-Fisher model: At each time step, each individual i of
the new generation picks up a parent at random and copies it
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Random drift in the neutral case

The Wright-Fisher model
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Random drift in the neutral case

• Probability that nA(t+ 1) = n, given nA(t) = Nx(t):

pn(t+ 1) =

(
N

n

)
(x(t))n(1− x(t))N−n

• Assume N ≫ 1, 1
N ≪ x ≪ 1− 1

N , then

Prob (x(t+ 1)=x) ∝ exp

(
− (x− x(t))2

2Nx(t)(1− x(t))

)
• ∆x(t) = x(t+ 1)− x(t):

⟨∆x(t)⟩ = 0
⟨
(∆x(t))2

⟩
=

x(t)(1− x(t))

N

6



The diffusion equation

Fokker-Planck equation:

∂

∂t
p(x, t) = − ∂

∂x
(⟨∆x⟩x p(x, t)) +

1

2

∂2

∂x2

(⟨
∆x2

⟩
x
p(x, t)

)
In our case

∂p

∂t
=

1

2N

∂2

∂x2
(x(1− x) p(x, t))
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The solution in the neutral case

• Set p(x, t | x0, 0) =
∑

n cn(x0)χn(x) e
−λnt/(2N)

• Eigenvalue equation:

x(1− x)χ′′
n(x) + (1− 2x)χ′

n(x) + λnχn(x) = 0

• Boundary conditions: x = 0, 1 are singular points; we require
χn(0, 1) finite ∀n

• Initial condition:

p(x, 0 | x0, 0) =
∑
n

cn(x0)χn(x) = δ(x− x0)

• Solution in terms of hypergeometric functions:

χn(x) = F (1− n, n+ 2, 2, x) λn = n(n+ 1)
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Results

• p(x, t) decays exponentially: p(x, t) ≃ 6x(0)(1− x(0))e−t/N for
t ≫ N

• Probability that A and a coexist at generation t:
Ω(t) =

∫ 1

0
dx p(x, t) decays with the same rate (p(x, t) is flat)

• However, p(x, t) becomes flat later when x(0) ̸= 1
2

• What is the probability of fixation of allele A as a function of
x(0)?

10



The backward equation

• p(x, t | x0, t0): Conditional probability that x(t) = x given that
x(t0) = x0

• Consider the effect of a single-generation sampling near t0:
x(t0 + 1) = x0 +∆x0

• Equation for p(x, t | x0, t0):

− ∂p

∂t0
= ⟨∆x0⟩x0

∂p

∂x0
+

1

2

⟨
∆x2

0

⟩
x0

∂2p

∂x2
0

• In our case
− ∂p

∂t0
=

x0(1− x0)

2N

∂2p

∂x2
0
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The fixation probability

• P (t, x0, t0) = p(1, t | x0, t0): probability of being fixed by time t

• “Ultimate” fixation probability: pfix(x0) = limt→∞ P (t, x0, t0)

• From the backward equation we obtain

d2pfix

dx2
0

= 0 x ∈ [0, 1]

• Boundary conditions: pfix(x0=0) = 0 and pfix(x0=1)

• Solution:
pfix(x0) = x0
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Wright-Fisher model with selection

• Population of N haploid individuals, two alleles A and a
• Fitnesses: wA, wa

• Probability that an individual with allele A is chosen as a
parent:

ξA =
nAwA∑N
j=1 wj

=
nAwA

nAwA + nawa
=

xwA

xwA + (1− x)wa

• Probability that nA(t+ 1) = n:

pn(t+ 1) =

(
N

n

)
ξnA (1− ξA)

N−n

• Average and variance:

⟨xA(t+ 1)⟩ = ξA⟨
(xA(t+ 1)− ⟨xA(t+ 1)⟩)2

⟩
= ξA (1− ξA) /N
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Selection and drift

If the first human infant with a gene for levitation
were struck by lightning in its pram, this would not prove
the new genotype to have low fitness, but only that the
particular child was unlucky.

John Maynard Smith
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Selection and drift

• Set wA = 1 + s, wa = 1, s ≪ 1

• Then ξA = xwA/(xwA + wa(1− x)) = (1 + s)x/(1 + sx)

• Then ⟨∆x⟩x = ⟨x(t+ 1)⟩ − x = sx(1− x)/(1 + sx) ≃ sx(1− x)

and
⟨
∆x2

⟩
≃ (x(1− x)/N)

• Diffusion equation for p(x, t):

∂p

∂t
= −s

∂

∂x
(x(1− x)p) +

1

2N

∂2

∂x2
(x(1− x)p)

• Solution in terms of spheroidal functions…
• Asymptotically p(x, t) ∝ χ(x) e−λt/N
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Solution with selection

The long-living eigenfunction:
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Solution with selection

The decay rate:
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The fixation probability with selection

• The backward equation:

∂p

∂t0
= sx0(1− x0)

∂p

∂x0
+

x0(1− x0)

2N

∂2p

∂x2
0

• Stationary solution:

∂pfix

∂x0
= C1e

−2Nsx0

pfix(x0) = C0 − C1e
−2Nsx0

=
1− e−2Nsx0

1− e−2Ns

• In particular, for s → 0, pfix → x0
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The fixation probability with selection
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Fixation probability of a single mutant

• For a single mutant x0 = 1
N

• Thus

pfix =
1− e−2s

1− e−2Ns

• Limits:
• s > 0, Ns ≫ 1: pfix ≃ 1− e−2s (for s ≪ 1, pfix ≃ 2s)
• s < 0, |Ns| ≫ 1, pfix ≃ 0

• |Ns| ≲ 1, pfix ≃ 1
N
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Fixation probability of a single mutant

1

p
fi
x
(x
)

s

N = 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 -0.5 0 0.5

N = 10

17



Frequency needed to obtain fixation

• How large must be x to be “almost sure” that a beneficial
mutant fixes?

• Solve
pfix(x∗) = 1− γ

• For Ns ≫ 1 we have pfix(x) ≃ 1− e−2Nsx, thus

x∗ = − log γ

2Ns
or n∗ = − log γ

2s

• The fate of the mutant is determined in its initial phase, where
it undergoes a branching process—the size of N is irrelevant!
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Substitution rate

• For a new mutant, x0 = 1
N

• For a neutral mutant, s = 0, thus pfix = x0 = 1
N

• If u is the mutation probability per genome and generation,
the expected number of mutants per generations is uN

• Of these, only a fraction 1
N reaches fixation, i.e., produces a

substitution
• Therefore the rate ν of neutral substitutions in a population
with mutation rate u is equal to u:

substitution rate = mutation rate

independently of the population size N
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The Moran model

Overlapping generations individual-based model:

Select for death

Initial population Select for reproduction

Replace
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The Moran model

• Selection: pkill(A) = 1− s, pkill(a) = 1

• ∆t = 1
N ; ∆nA ∈ {−1, 0,+1}

• Probabilities:

P−1 =
na

N︸︷︷︸
Probrepr(a)

(1− s)
nA

N︸ ︷︷ ︸
Probkill(A)

= (1− s)x(1− x)

P+1 =
nA

N

na

N
= x(1− x)

P0 = 1− (P+1 + P−1)

20



The Moran model

• Thus, for ∆t = 1
N , s ≪ 1:

⟨∆nA⟩ = P+1 − P−1 = sx(1− x)⟨
(∆nA)

2
⟩

= P+1 + P−1 = (2− s)x(1− x) ≃ 2x(1− x)

• The diffusion equation for the Moran model:

∂p

∂t
= − ∂

∂x
(sx(1− x)p) +

1

N︸︷︷︸
= 1/2N for WF

∂2

∂x2
(x(1− x)p)

• The devil (or God?) is in the details…
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Adaptation and drift

Mustonen and Lässig, 2005–2010

Finite population of size N , r alleles, Moran model. Effects of
mutation and selection:

dxj

dt
=
∑
k

Γjk
∂Φ

∂xk
; Φ = ⟨f⟩x +

∑
α

µα log xα

Γjk(x) =

{
−xjxk, if j ̸= k

xj(1− xj), if j = k
Γ positive definite
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Adaptation and drift

Mustonen and Lässig, 2005–2010

• Random drift: x −→ x+ ξ

⟨
ξj
⟩
x
= 0;

⟨
ξjξk

⟩
= 2

Γjk(x)

N

• Fokker-Planck equation for the pdf P (x):

∂P

∂t
=

∑
jk

∂

∂xj

[
− ∂Φ

∂xk
(ΓjkP ) +

1

N

∂

∂xk
(ΓjkP )

]

=
∑
jk

∂

∂xj
Γjk

(
− ∂Φ̃

∂xk
P +

1

N

∂P

∂xk

)
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Adaptation and drift

Mustonen and Lässig, 2005–2010

• Φ̃ = Φ− 1
N log det Γ; det Γ =

∏
α xα

• Stationary solution:

P eq(x) ∝ eNΦ̃ = (det Γ)−1 eNΦ = P0 e
N⟨f⟩x

P0(x) ∝
∏
α

x−1+Nµα

• Thus, for a static fitness function f ,

[N ⟨f⟩x]
eq
av

=

∫
dx P eq(x) log

P eq(x)

P0(x)
= DKL (P

eq∥ P0)︸ ︷︷ ︸
Kullback-Leibler divergence

DKL(p∥q) =
∑
k

pk log
pk
qk

(1)
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cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

• Factor binding sites are short DNA sequences which bind
activating factors

• Small mutation rates: µN ≪ 1 ⇒ Population becomes
monomorphic (x = (xα) → δαβ)

pβ = Prob
(
x = δαβ

)
∝ eNfβ

• It is reasonable to assume that their fitness depends on their
binding energy E

• One can expect a linear model for E(σ), σ = (σ1, . . . , σℓ),
σi ∈ {A, T, G, C}

E(σ) =

ℓ∑
i=1

ϵi(σi) with ϵi(σ) = ϵ0 log
qi(σ)

p0(σ)

p0(σ): background nucleotide frequency
22



cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

Log histogram P (E) of binding energy E for 520 729 CRP-binding
loci in E. Coli. Compared with
P (E) = (1− λ)P0(E) + λP0(E)e2NF (E). The inferred form of
2NF (E) is also plotted. (W-F model) 22



Thank you!
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