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Lecture 4.

Renormalization in QG
• Gauge symmetry and renormalization. Power counting.
• Quantum GR vs higher derivative theory (HDQG).
• Superrenormalizable QG.

• Ghosts in general HDQG.
• Ambiguities and 1-loop results.
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We start from some covariant action of gravity,

S =

∫

d4x
√−g L(gµν) .

L(gµν ) can be of GR, L(gµν ) = −κ−2(R + 2Λ) or some other.

Gauge transformation x ′µ = xµ + ξµ. The metric transforms as

δgµν = g′

µν(x)− gµν(x) = −∇µξν −∇νξµ .

It is customary to parametrize metric as

gµν(x) = ηµν + κhµν(x) ,

then

δhµν = −1
κ
(∂µξν −∂νξµ)−hµα∂νξ

α−hνα∂µξ
α− ξα∂αhµν = Rµν , αξ

α .

The gauge invariance of the action means

δS
δhµν

· Rµν , α ξα = 0 .
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It proves useful to divide hµν into irreducible components

ωµν =
kµkν
k2 , θµν = ηµν − ωµν .

The (Rivers) projectors are

P(2)
µν , αβ =

1
2
(θµαθνβ − θµβθνα)−

1
3
θµνθαβ ;

P(1)
µν , αβ =

1
2
(θµαωνβ + θναωµβ + θµβωνα + θνβωµα) ;

P(0−s)
µν , αβ =

1
3
θµνθαβ , P(0−w)

µν , αβ = ωµνωαβ ;

and the transfer operators

P(ws)
µν , αβ =

1√
3
θµνωαβ , P(sw)

µν , αβ =
1√
3
ωµνθαβ .
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Then for the propagator of the gravitational field we get

〈hµν hαβ〉 =









P(2) 0 0 0
0 P(1) 0 0
0 0 P(0−s) P(sw)

0 0 P(sw) P(0−s)









Also, one can present the quantum metric as

hµν = h⊥

µν +
1
4
ηµνϕ+ 2∇(µεν) ,

where
h⊥

µν = P(2)
µν

αβ hαβ , 2∇(µεν) = P(1)
µν

αβ hαβ ,

and
εµ = ε⊥µ + ∂µσ , ϕ = h −�σ , h = hµ

µ .

Performing gauge transformation, we get

δh⊥

µν = 0 , δϕ = 0 , δσ = −2ξ , δε⊥µ = −ξ⊥µ , where ξµ = ξ⊥µ +∂ξ .
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An important observation is that one can use another
parametrization for quantum metric, e.g.,

κΦµν =
√−ggµν − ηµν ,

or even quantize in a very different variables. Here we shall use
the parametrization with hµν .

An important requirement is that relevant observables shou ld
not depend on the choice of parametrization and, in particul ar,
on the gauge fixing condition (gauge dependence).

In general, this dependence is not easy to deal with, but in so me
cases (one-loop divergences) we can do it easily.
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Gauge invariant renormalizability

Gauge invariant renormalizability of the theory means that the
divergences (and therefore counterterms), in all loop orde rs,
have the same symmetry as the classical action. It does not
guarantee the multiplicative renormalizability, that req uires also
a “correct” power counting.

The papers on renormalizability in quantum Gravity (QG) inc lude

K. Stelle, Phys. Rev. D (1977).

I.L. Buchbinder, S.D. Odintsov, I.Sh., Effective Action in Quantum
Gravity (IOPP, 1992).

B.L. Voronov and I.V. Tyutin, Sov. Nucl. Phys. (1981,1984).

P.M. Lavrov, I.Sh., Gauge invariant renormalizability of quantum
gravity, arXiv:1902.04687

The last work deals with the QG theory of a general form and
use Batalin-Vilkovisky formalism. In what follows we use
notations of Stelle.
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As far as we intend to arrive at the Feynman rules, we can start
from the Faddeev-Popov approach,

Z (J) =

∫

DhDCDC̄ Det (Yαβ)

× exp
{

iS(h) +
i
2
χα Yαβ χ

β +
i
2

C̄α Mβ
α Cβ + iJµνhµν

}

.

where the ghost part is Mβ
α =

δχα

δhµν
Rµν , α .

The useful choice of the gauge fixing condition and the weight
function depends on the theory.
The most popular gauges are the Fock-deDonder one

χµ = ∂νΦ
µν , κΦµν =

√−ggµν − ηµν ,

harmonic gauge χµ = ∂νhµν − β∂µh , β =
1
2
,

and background gauges

χµ = ∇νhµν − β∇µh , where gµν → g′

µν = gµν + hµν .
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Consider the total action with gµν(x) = ηµν + κhµν(x) ,

St = S(h) +
1
2
χα Yαβ χ

β +
1
2

C̄α Mβ
α Cβ .

It is not gauge invariant, but possesses BRST invariance,

δRµν , α

δhρσ
Rρσ , β − δRµν , β

δhρσ
Rρσ , α = Rµν , γ f γ αβ ,

where for a gravity theory

f γ αβ(x , y , z) = δγαδ(x − z)∂βδ(x − y) + δγβδ(x − y)∂αδ(x − z) .

Then,
δBRST hµν = κRµν , α Cα δµ ,

δBRST Cα =
1
2

fα βγ Cβ Cγ δµ = Cβ ∂αCα · δµ .

δBRST C̄α = Yαβ χβ(h) δµ ,
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It proves useful to introduce two extra sources.
Consider the total action

S̄ = St + KµνRµν , αC̄α + Lσ∂β Cσ Cβ .

One can easily prove that it satisfies the Noether identity

δS̄
δKµν

δS̄
δhµν

+
δS̄
δLσ

δS̄

δC̄σ
+ Yαβ χ

β δS̄

δC̄α

= 0 .

One can perform the BRST transformation in Z and since it does
not change, we arrive at the Slavnov-Taylor identities for Z ,

Z (J , β̄, β,K , L) =

∫

DhDCDC̄ Det (Yαβ)

× exp
{

iS̄ + iJµνhµν + iC̄µβ
µ + iβ̄µCµ

}

.
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As a next step we define W = −i ln Z and the mean fields

〈hµν〉 =
δW
δJµν

, 〈Cσ〉 = δW
δβ̄σ

, 〈C̄ρ〉 =
δW
δβρ

.

The corresponding effective action

Γ(hµν , Cσ, C̄ρ, Kµν , Lσ)

= W (Jµν , β̄σ, β
ρ, Kµν , Lσ)− hµνJµν − C̄ρβ

ρ − Cσβ̄σ .

One can prove that it satisfies the identity

δΓ

δKµν

δΓ

δhµν
+

δΓ

δLσ

δΓ

δC̄σ
+ Yαβ χ

β δΓ̃

δC̄α

= 0 .
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Finally, we introduce modified quantities

S̃ = S̄ − 1
2
χα Yαβ χ

β

and

Γ̃ = Γ− 1
2
χα Yαβ χ

β ,

which satisfy the identities

δS̃
δKµν

δS̃
δhµν

+
δS̃
δLσ

δS̃

δC̄σ
= 0 .

and
δΓ̃

δKµν

δΓ̃

δhµν
+

δΓ̃

δLσ

δΓ̃

δC̄σ
= 0 ,

along with the so-called ghost equation

δχα

δhρσ

δΓ̃

δK ρσ
− δΓ̃

δC̄α

= 0 .
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Consider the loop expansion

Γ̃ = S̃ +
∞
∑

k=1

~
k Γ̃(k) , where Γ̃(k) = Γ̃

(k)
div + Γ̃

(k)
fin .

Assuming that the orders 1, 2, ..., k − 1 are already renormalized,
one can show that k - order terms do satisfy the identities

E Γ̃(k)div =

k
∑

i=0

{δΓ̃(k−i)

δKµν

δΓ̃(i)

δhµν
+

δΓ̃(k−i)

δLσ

δΓ̃(i)

δC̄σ

}

, (∗)

where the nilpotent E2 = 0 operator is defined as

E =
δS̃
δhµν

δ

δKµν
+

δS̃
δKµν

δ

δhµν
+

δS̃
δLσ

δ

δC̄σ
+

δS̃

δC̄σ

δ

δLσ
.

Obviously, (*) is equivalent to

E Γ̃(k)div = 0 .
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Due to the nilpotence of E and

E Γ̃(k)div = 0

the most general local solution is

Γ̃
(k)
div = A(hµν ) + EX(hµν , Cσ, C̄ρ, Kµν , Lσ) ,

where A is some covariant functional and X is an arbitrary local
functional of its variables.

One can prove that the EX -terms can be removed by
• Renormalization of the field hµν together with some gauge
transformation.
• Renormalization of the FP ghosts Cµ and C̄ν together with
some BRST transformation.

Finally, the problem is reduced to the possible form of the
covariant local functional A(hµν ).
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Let us use the notion of power counting to explore A(hµν ). The
universal formula for the superficial degree of divergence i s

D + d =
∑

lint

(4 − rl) − 4n + 4 +
∑

ν

Kν .

Here

D is the superficial degree of divergence for a given diagram,
d is the number of derivatives on external lines of the diagram ,
rl is the power of momenta in the propagator of internal line,
n is the number of vertices and
Kν is the power of momenta in a given vertex.

On the top of that one can use topological relation between
number of loops p, vertices n, and internal lines

lint = p + n − 1 .
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As the first example consider quantum GR.

S = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

For the sake of simplicity we consider only vertices with
maximal Kν . Then we have rl = Kν = 2 and, combining

D + d =
∑

lint

(4 − rl) − 4n + 4 +
∑

ν

Kν

with
lint = p + n − 1

we arrive at the estimate ( D = 0 means log. divergences)

D + d = 2 + 2p .

This output means that quantum GR is not renormalizable.
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More details: What means the relation

D + d = 2 + 2p ?

Remember that D = 0 means logarithmic divergences.

At the 1-loop level we can expect the divergences like

O(R2
...) = R2

µναβ , R2
µν , R2 .

t’Hooft and Veltman; Deser and van Nieuwenhuisen, (1974); ...

At the 2-loop level we have

O(R3
...) = Rµν�Rµν , ...R3 , RµνRµ

αRαν , RµναβRµν
ρσRµνρσ .

M.H. Goroff and A. Sagnotti, NPB 266 (1986).

The last structure does not vanish on-shell and this proves t hat
the theory is not renormalizable, at least within the standa rd
perturbative approach.
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Within the standard perturbative approach non-renormaliz ability
means the theory has no predictive power.

Every time we introduce a new type of a counterterm, it is
necessary to fix renormalization condition and this means a
measurement. So, before making a single predictions, it is
necessary to have an infinite amount of experimental data.

What are the possible solutions?

• Change standard perturbative approach to something else.
There are many options, but their consistency or their relat ion to
the QG program are not clear, in all cases.

• Change the theory, i.e., take another theory to construct QG .

The first option is widely explores in the asymptotic safety
scenarios, in the effective approaches to QG, induced gravi ty
approach (including string theory) and so on.

Let us concentrate on the second idea.
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The most natural choice is four derivative model, because we
need four derivatives anyway for quantum matter field.

Already known action: Sgravity = SEH + SHD

where SHD includes square of the Weyl tensor and R

SHD = −
∫

d4x
√−g

{

1
2λ

C2 +
ω

3λ
R2 + surface terms

}

,

C2(4) = R2
µναβ − 2R2

αβ + R2/3 ,

Propagators of metric and ghosts behave like O(k−4) and we
have K4, K2, K0 vertices.

The superficial degree of divergence

D + d = 4 − 2K2 − 4K0.

Dimensions of counterterms are 4, 2, 0.
This theory is definitely renormalizable.
K. Stelle, Phys. Rev. D (1977).
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However there is a price to pay: massive ghosts

Gspin−2(k) ∼ 1
m2

(

1
k2 − 1

k2 + m2

)

, m ∝ MP .

The tree-level spectrum includes massless graviton and mas sive
spin- 2 “ghost” with negative kinetic energy and a huge mass.

Particle with negative energy means instability of vacuum s tate.

Even Minkowski space is not protected from spontaneous
creation of massive ghost and many gravitons from vacuum.

Different sides of the HDQG problems with massive ghosts:

• In classical systems higher derivatives generate explodin g
instabilities at the non-linear level (M.V. Ostrogradsky, 1850).

• Interaction between ghost and gravitons may violate energy
conservation in the massless sector (M.J.G. Veltman, 1963).

• Ghost produce violation of unitarity of the S -matrix.
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One can include more than four derivatives,

S = SEH

+

N
∑

n=0

∫

d4x
√−g

{

ωC
n Cµναβ�

nCµναβ + ωR
n R�nR

}

+O
(

R3
...

)

.

Simple analysis shows that this theory is superrenormaliza ble,
BUT massive ghost-like states are still present.

For the real poles case:

G2(k) =
A0

k2 +
A1

k2 + m2
1

+
A2

k2 + m2
2

+ · · ·+ AN+1

k2 + m2
N+1

.

For any sequence 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1,
the signs of the corresponding terms alternate: Aj · Aj+1 < 0.

M. Asorey, J.-L. Lopez & I. Sh., IJMPhA (1997), hep-th/9610006.
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Exact β-functions in QG

In the superrenormalizable QG one can derive exact RG
equations by working at the one-loop level !

M. Asorey, J.-L. Lopez & I. Sh., IJMPhA (1997), hep-th/9610006.

βΛ = µ
dρΛ
dµ

=
1

(4π)2

(

5ωN−2,C

ωN,C
+

ωN−2,R

ωN,R
−

5ω2
N−1,C

2ω2
N,C

−
ω2

N−1,R

2ω2
N,R

)

.

L. Modesto, L. Rachwal & I.Sh., arXiv:1704.03988, EJPC (2018).

βG = µ
d

dµ

(

− 1
16πG

)

= − 1
6(4π)2

(

5ωN−1,C

ωN,C
+

ωN−1,R

ωN,R

)

.

Different from four-derivative quantum gravity these β-functions
do not depend on the choice of a gauge-fixing condition.

And for N ≥ 3 they are exact.
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Two sides of higher derivatives in QG.

The consistent theory which is supposed to work at arbitrary
energy scale can not be constructed without at least fourth
derivatives.

If the higher derivative terms are included, then the tree-l evel
spectrum includes massless graviton and massive spin-2
“ghost” with negative kinetic energy and huge mass.

If we do not include the higher derivative terms into classic al
action, they will emerge with infinite coefficients and (most
relevant) with logarithmically running parameters. In any case,
the unphysical ghosts come back.

No way to live with ghosts and no way to live without ghosts.

Still we can live, so there must be some explanation, of cours e.
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An alternative to Zweibach transformation

In the non-local theory

S = − 1
2κ

∫

d4x
√−g

{

R + Gµν
a(�)− 1

�
Rµν

}

, a(�) = e−�/m2

.

A. Tseytlin, PLB, hep-th/9509050.

In this and similar theories propagator of metric perturbat ions
has a single massless pole, corresponding to gravitons.

With this choice there are no ghosts!

The idea is to use Zweibach-like transformation, but arrive at
the non-local theory which is non-polynomial in derivative s,
instead of “killing” all higher derivatives that one can kil l.

One more ambiguity in the (super)string theory.
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There was a proposal to use the same kind of non-local models
to construct superrenormalizable and unitary models of QG.

E.T. Tomboulis, hep-th/9702146; PRD (2015), arXiv:1507.00981.
. . .

L. Modesto, L. Rachwal, NPB (2014), arXiv:1407.8036.

The propagator is defined by the terms bilinear in curvature’ s,

S =

∫

x

{

− 1
κ2 R +

1
2

Cµναβ Φ(�)Cµναβ +
1
2

R Ψ(�)R
}

.

The equation for defining the poles:

p2
[

1 + κ2p2Φ(−p2)
]

= p2 eαp2

= 0.

In this particular case there is only a massless pole
corresponding to gravitons. But unfortunately, it is impossible
to preserve the ghost-free structure at the quantum level.
I.Sh., PLB, arXive:1502.00106.

Typically there are infinitely many poles on the complex plan e.
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Complex ghosts and Lee-Wick unitarity in QG

Starting from Tomboulis (1977) and Salam and Strathdee (1978)
the main hope in the “minimal” fourth-derivative QG was that the
real ghost pole splits into a couple of complex conjugate pol es
under the effect of quantum corrections.

One-loop effects, large- N approximation and lattice-based
considerations indicated an optimistic picture, but unfor tunately
all of them are not conclusive, as shown by Johnston (1988).

However, for six- or more- derivative theory of QG, one can ju st
start from the theory which has only complex massive poles.

L. Modesto, and I.Sh. PLB (2016), arXiv:1512.07600.

It turns out that such a theory is unitary and, moreover,
this property may probably hold even at the quantum level.
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Quantum consistency
There is yet another difficulty of non-local gravity, which i s
possibly shared by other e.g. polynomial models.

In the recent paper

M. Asorey, L. Rachwal, I.Sh., Galaxies - 2018; arXiv:1802.01036

it was shown that within the non-local models of exponential
type the reflection positivity condition is not satisfied.

The Euclidean 2-point function S2(x , y) should satisfy
Osterwalder-Schrader reflection positivity property

∫

θf (x)S2(x , y)f (y) > 0.

For the non-local gravity this is not true.

This means that this theory has unphysical modes regardless of
the absence of massive pole in the tree-level propagator.
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The main issue is stability

Certainly, the unitarity of the S- matrix is not the unique
condition of consistency of the quantum gravity theory.

The most important feature is the stability of physically re levant
solutions of classical general relativity in the presence o f higher
derivatives and massive ghosts.

The problem is well explored for the cosmological backgroun ds.
Gravitational waves on de Sitter space (energy ≪ Mp):

A. A. Starobinsky, Let. Astr. Journ. (in Russian) (1983).

S. Hawking, T. Hertog, and H.S. Real, PRD (2001).
J. Fabris, A. Pelinson and I.Sh., NPB (2001).

J. Fabris, A. Pelinson, F. Salles and I.Sh., JCAP, arXiv:1112.5202.

More general FRW-backgrounds:

F. Salles and I.Sh., PRD, arXiv:1401.4583.
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More general cosmological backgrounds

1000 2000 3000 4000 5000 6000
t

- 6000

- 4000

- 2000

2000

4000

6000

h H t L

k = 0.44

k = 0.42

k = 0.40

k = 0.30

k = 0.20

50 100 150 200 250
t

- 150000

- 100000

- 50000

50000

100000

150000

h H t L
k = 0.50

Example: radiation-dominated Universe. There are no growi ng
modes until the frequency k achieves the value ≈ 0.5 in Planck
units. Starting from this value, we observe instability as a n
effect of massive ghost.

The anomaly-induced quantum correction is O(R3
....). Until the

energy is not of the Planck order of magnitude, these
corrections can not compete with classical O(R2

....) - terms.

Massive ghosts are present only in the vacuum state. We just d o
not observe them “alive” until the energy scale MP .
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What can we do Planck or greater frequencies?

The simplest possible equation is for the fourth-derivativ e
gravity without quantum (semiclassical) corrections,

1
3

....

h + 2H
...

h +
(

H2 +
M2

P

32πa1

)

ḧ +
1
6
∇4h
a4 − 2

3
∇2ḧ
a2 − 2H

3
∇2ḣ
a2

−
(

HḢ + Ḧ + 6H3 − 3M2
P
H

32πa1

)

ḣ −
[ M2

P

32πa1
− 4

3

(

Ḣ + 2H2
) ]∇2h

a2

−
[

24ḢH2 + 12Ḣ2 + 16HḦ +
8
3

...

H − M2
P

16πa1

(

2Ḣ + 3H2
) ]

h = 0.

It is easy to note that the space derivatives ∇ and hence the
wave vector ~k enter this equation only in the combination

~q =
~k

a(t)
.

When universe expands, each frequency becomes smaller!
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Filipe de O. Salles, Patrick Peter, I.Sh., On the ghost-induced
instability on de Sitter background. PRD (2018), arXiv:1801.00063

The qualitative conclusion is perfectly well supported by
numerical analysis, including the case when the semiclassi cal
corrections are taken into account.

The growth of the waves really stops at some point. At least in
the cosmological setting this may be a solution of the proble m.

Ilya Shapiro, Quantum Gravity from the QFT perspective Apri l - 2019



General qualitative situation.

1) We know there is no way to have semiclassical or quantum
gravity without higher derivatives.

2) Higher derivatives mean ghosts and instabilities. But in the
closed system the problem can be solved because there is no
energy to provide a global and total explosion of ghost or eve n
tachyonic ghost modes (Lee-Wick approach).

G. Dvali, S. Folkerts, C. Germani, PRD (2011), arXiv:1006.0984;
G. Dvali and C. Gomez, Fortschr. Phys. (2013), arXiv:1112.3359.

May be there is some general unknown principle which forbids
Planck-scale concentration of gravitons.

3) Then this restriction can be violated only for the Planck- scale
background, which “opens” the phase space of quantum states
and enables the production of instabilities. But after that the
expansion of the universe reduce the frequencies and the
instabilities do stabilize.
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• Ambiguities and one-loop results.

Before we start to discuss the results of the existing loop
calculations (mainly 1-loop), it is worthwhile to see wheth er and
to which extent these results are ambiguous.

As we already know, one can use, for quantum calculations,
different choices of parametrization of quantum field (metr ic, in
the case) and also different gauge fixing conditions.

As an example, consider the 1-loop expression for the
non-gauge theory with the classical action S(Φi ). We know that

Γ̄(1) =
i
2

Log Det S′′

ij , S′′

ij =
δ2S

δΦi δΦj
.

Let us change the variables according to Φi = Φ′

k . Obviously,

Γ̄(1) = Log Det
( δ2S
δΦ′

l δΦ
′

k

)

= Log Det
(

S′′

ij ·
δΦi

δΦ′

k

δΦj

δΦ′

l
+

δS
δΦi

δ2Φi

δΦ′

l δΦ
′

k

)

.
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Looking at the formula

Γ̄(1) = Log Det
( δ2S
δΦ′

l δΦ
′

k

)

= Log Det
(

S′′

ij ·
δΦi

δΦ′

k

δΦj

δΦ′

l
+

δS
δΦi

δ2Φi

δΦ′

l δΦ
′

k

)

.

one can immediately note that the two 1-loop results do coinc ide
on classical equation of motion (on-shell), when

εi =
δS
δΦi

= 0 .

The same is true for the Faddeev-Popov action in the gauge
theory. In particular, for QG, the 1-loop contribution

Γ̄(1) =
i
2

Log Det
[(

S + Sgf

)′′

ij

]

− i Log Det
[

S′′

ghost

]

may depend on the gauge fixing condition and weight function

SFP = S(h) +
1
2
χα Yαβ χ

β +
1
2

C̄α Mβ
α Cβ .
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What does it mean for the one-loop divergences in QG?

Obviously, there may be some ambiguity, proportional to

εi =
δS
δΦi

.

Another very important aspect which has to be taken into
account is the locality of UV divergences (Weinberg’s theor em).

The level of ambiguity will always depend on the given theory ,
namely on the relation between power counting-allowed
divergences and the form of εi .
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I. Quantum GR with the cosmological constant term.

S = − 1
κ2

∫

d4x
√−g

(

R + 2Λ
)

.

Then

εµν =
1√−g

δS
δgµν

= Rµν − 1
2

(

R + 2Λ
)

gµν .

Using the power-counting arguments we learn that

Γ
(1)
div =

1
ǫ

∫

d4x
√−g

{

a1 C2 + a2E + a3�R + a4R2 + a5R + a6
}

,

(1)
where

E = RµναβRµναβ − 4 RαβRαβ + R2 ,

C2(4) = E + 2W , W = RαβRαβ − 1
3

R2 .
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It is easy to check that the ambiguity in ∆S has the form

δΓ
(1)
div =

1
ǫ

∫

d4x
√−g εµν

(

b1Rµν + b2Rgµν + b3gµν

)

. (2)

εµν =
1√−g

δS
δgµν

= const ×
[

Rµν − 1
2

(

R + 2Λ
)

gµν
]

.

As a result only three of the six coefficients in (1) are
gauge-fixing independent.

For example, without the cosmological constant term only the
topological Gauss-Bonnet counterterm can not be set to zero by
the choice of the gauge fixing condition.

This result was first discovered by direct calculation in

R. Kallosh, O.V. Tarasov and I. Tyutin, Nucl.Phys. B137 (1978).
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The first one-loop calculation in quantum GR without the
cosmological constant term was done in

G. ’tHooft, M. Veltman, Ann. Inst. H. Poincare XX (1974) 69.
S. Deser, P. van Nieuwenhuizen, PRD 10 (1974) 401; 411.
S. Deser, H-S. Tsao, P. van Nieuwenhuizen, PRD 10 (1974) 3337.

The result for the pure QG is

Γ
(1)
div =

1
ǫ

∫

d4x
√−g

{

7
20

R2
µν +

1
120

R2 − 13
3

ΛR + 10Λ2
}

but, as we already know, all but one combination of these
coefficients are irrelevant.

Conclusion: 1-loop S - matrix in the QG based on GR without
cosmological constant is finite. If we introduce the cosmological
constant, the flat space is not a classical solution and the se nse
of the S - matrix approach becomes unclear.
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In the same papers by ’tHooft, Veltman, Deser et al it was
established that the metric-scalar, metric-vector and
metric-spinor theories are not finite at the 1-loop level.

Calculations of this sort were repeated many times after 197 4.

For example, in the Einstein-scalar system with non-minima l
coupling the expression for divergences is

Γ
(1)
div =

1
ǫ

∫

d4x
√−g

{

cwC2+cr R2+c4R(∇φ)2+c5R(�φ)+c6Rµνφ;µφ;ν

+c7R + c8(∇φ)4 + c9(∇φ)2(�φ) + c10(�φ)2 + c11(∇φ)2 + c12

}

+(s.t .)

where ”s.t .” means “surface terms”.

The expressions for c1, ..., c12 require a few pages, and there’s
no agreement between different calculations, perhaps due t o the
ambiguity of gauge and parametrization (not checked yet!).
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One-loop calculations in HDQG (4 derivatives) and discussi on of
gauge ambiguity has been done by several groups:

J. Julve & M. Tonin (1978),
E.S. Fradkin & A.A. Tseytlin (1982),
I. Avramidi & A.O. Barvinsky (1986)
I. Antoniadis and E. Mottola (1992)
G. Berredo-Peixoto & I.Sh. (2005).

Detailed discussion of gauge dependence:
I. Avramidi, Ph.D. thesis (1986), hep-th/9510140;
I.Sh., A.G. Jacksenaev, PLB 324 (1994) 284.

Also, calculation in HDQG coupled to matter was done by:

E.S. Fradkin & A.A. Tseytlin (1982),
I.L. Buchbinder, I.Sh. et al (1986-1990) ...

Recently the last subject became relevant due to some works
where it’s stated that the (GR-based) QG contributions can
provide AF in the theory of Abelian gauge field.
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Consider the gauge dependence in HDQG. According to the
power counting and general covariance considerations the
possible counterterms have the form:

∆S =

∫

d4x
√−g

{

a1C2
αβµν + a2R2 + a3E + a4�R + a5R + a6

}

,

where ai are some divergent constants.

Γ(αi ) is an effective action for arbitrary values of the gauge
parameters αi and Γm = Γ(α

(0)
i ) for some special values α

(0)
i .

We can write

Γ(αi) = Γm +

∫

d4x
√−g εµν fµν(αi) ,

where
εµν = δS/δgµν

and fµν(αi) some unknown function.
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We are interested in the divergent part of Γ(αi ).

The divergencies are local and moreover Γ(αi) and εµν have
the dimension of the classical action, hence it can be only

fµν(αi) = gµν × f (αi ) ,

and therefore

Γ(αi) = Γm + f (αi )

∫

d4x
√−g gµν

δS
δgµν

.

The change of the gauge condition at one loop equivalent to th e
conformal “shift” of the classical action S.

E.g., in the Weyl gravity the effective action does not depen d on
the gauge parameters.
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Consider the general version of HDQG.

1√−g
gµν

δ

δgµν

∫

d4x
√−gR2 = − 6(�R) .

Conformal and surface terms don’t contribute to εµν , hence

Γ(αi ) = Γm + f (αi )

∫

d4x
√−g

{

− 1
κ2 (R − 4Λ)− 2ω

λ
�R
}

.

Therefore, a1, a2, a3 do not depend on the gauge parameter
values while a4, a5, a6 do.

One can construct gauge independent parameters

a7 = a6 + Λa5 ,
λ

4ω
a4 − κ2a5 ,

λΛ

4ω
a4 + κ2 a6 .

An important consequence is that one can define the ren. group
beta-functions only for the dimensionless ratio, κ2 Λ. This is
related to the known feature of induced gravity ( S. Adler, 1981).
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Writing the classical action of HDQG in the form

S = −µn−4
∫

dnx
√

g
{ 1

2λ
C2 − 1

ρ
E +

1
ξ

R2 + τ �R− 1
κ2 (R−2Λ)

}

the counterterms are, with ǫ = (4π)2(n − 4),

∆S =
µn−4

ǫ

∫

dnx
√

g
{ 133

20
C2 − 196

45
E +

(10λ2

ξ2 − 5λ

ξ
+

5
36

)

R2 +

+
( ξ

12λ
− 13

6
− 10λ

ξ

) λ

κ2 R +
( 56

3
− 2 ξ

9λ

) λΛ

κ2 +
( ξ2

72
+

5λ2

2

) 1
κ4

}

.

The surface term was not included here for brevity.

The form of the couterterms confirms our expectations, namel y
they have the same algebraic structure as the classical acti on.
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The renormalization group equations are

(4π)2 dλ
dt

= − 133
10

λ2 , (4π)2 dρ
dt

= − 196
45

ρ2 ,

(4π)2 dξ
dt

= − 10λ2 ξ2 + 5λ ξ − 5
36

.

There is an AF in the coupling constant λ and parameter ρ.

The equation for ξ is better explored in other variables

θ = λ/ρ , ω = −3λ/ξ .

The phase plane looks like (x ≡ ω , y = θ)

0.324

0.325

0.326

0.327

0.328

0.329

0.33

y

–6 –5 –4 –3 –2 –1 0 1
x
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Finally, let us comment of gauge dependence for the
superrenormalizable HDQG.

S =

∫

d4x
√−g

{

c1Rµναβ�
k Rµναβ + c2Rµν�

k Rµν + c3R�k R + ...
}

.

In this case the counterterms have the form ( k ≥ 3 case),

∆S =

∫

d4x
√−g

{

a1C2
αβµν + a2R2 + a3E + a4�R + a5R + a6

}

,

but εµν has much larger dimension. As a result there is no
ambiguity related to gauge fixing in the countereterms in all loop
orders. Practical calculations have been performed for the
cosmological constant counterterm, so far.

Ilya Shapiro, Quantum Gravity from the QFT perspective Apri l - 2019



Conclusions

• QG can be formulated, in a natural way, as a
symmetry-preserving theory. This means that all loop
divergences are diffeomorphism-invariant local function als.

• At the same time the simplest QG based on GR is not
renormalizable by power counting, such that the requested
number of counterterms eventually becomes infinite.

• HDQG is renormalizable theory, so one can calculate any
observable. But its physical interpretation is spoiled by m assive
ghosts, which can violate unitarity if being removed ad hoc.

• It is unclear whether ghosts persist at the non-perturbativ e
level, also there are strong indications that they are actua lly not
generated below the Planck scale.

• Taking into account the role of higher derivatives, the ghos t
issue is one of the main challenges in the whole QG.
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Exercises and references

1. Explore the relations between Rivers projectors (page 4) and the
parametrization on page 5.

2. Derive the equations of motion for the action of gravity which
includes R, R2 and RµνRµν terms. Explain why adding RµναβRµναβ

is not changing the physical contents of the theory. Verify this
statement by direct calculation. Verify that the traces of equations of
motion for these three terms are the same, up to numerical
coefficients [arXiv:1507.03620].

3. Derive the action of ghosts for the three parameterizations of the
metric discussed on page 8.

4. Verify BRST invariance for gravity and discuss its dependence on
the action (e.g. quantum GR or fourth derivative).
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5. Write down the explicit form of the generators for diffeomorphism,
and the form of the gauge structure functions. Verify the closed
algebra of the generators on pg. 9.

6. Using mathematical induction, prove the topological relation on
page 15. Generalize the power counting formula for D + d for an
arbitrary dimension of spacetime. Apply these results to establish the
number of derivatives required to have renormalizable QG in n = 2
and n = 6 dimensions. Try to construct the gravity action in 2D,
leading to a consistent QG theory.

7. Consider six-derivative scalar model

S =

∫

dnx
{

aϕ�ϕ+ bϕ�2ϕ+ cϕ�3ϕ.
}

Find the conditions for the constants a, b, c which are needed to have
positively defined kinetic energy of the massless mode and (i) two
real massive poles. (ii) complex conjugate poles. Prove that if the
masses of the massive particles in (i) are real and different, the
lightest of these particles is ghost and the heaviest one has positive
kinetic energy [hep-th/9610006, arXiv:1604.07348].
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8. Derive the general form of the gauge fixing dependence in the
one-loop counterterms in quantum GR. Extract the combinations of
the coefficients of six possible counterterms which are invariant
[arXiv:1712.03338 and references therein]. Which of the famous
coefficients on page 38 is invariant?

9. As a follow-up of the previous exercise, use the results of the paper
of ’tHooft and Veltman (1974) to derive the coefficient of the pole of
the Gauss-Bonnet terms in pure QG and in the theory with additional
scalar field. Without explicit calculations show that this sum does not
depend on whether the quantum calculations are performed in
Einstein or Jordan frame.

10. Verify the gauge fixing independence of the three combinations of
parameters given on page 43. Show that this list can not be
extended.

11. Prove that in the theory of QG with six or more derivatives all
logarithmic divergences are gauge-fixing independent (pg. 46).
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