Archive for April, 2015

LHC volta a ser ligado após dois anos

Written by Ricardo Aguiar on April 30th, 2015. Posted in Blog do ICTP-SAIFR

Maior acelerador de partículas do mundo foi ligado em abril e pretende começar nova etapa de coleta de dados em junho

lhc

Operadores do LHC confirmam a primeira circulação de feixes de prótons pelo acelerador após dois anos (Imagem: Maximilien Brice/CERN)

 

O Large Hadron Collider (LHC), maior acelerador de partículas do mundo, voltou a ser ligado nesse mês de abril após um período de dois anos de manutenção e aprimoramentos. Apesar de ainda não estar pronto para realizar colisões, no último dia 5 dois feixes de prótons circularam pelo equipamento com uma energia relativamente baixa. A previsão é que a coleta de dados comece no mês de junho, com uma energia de 13 TeV – o que superaria o recorde de 8 TeV estabelecido pelo próprio LHC.

Entre os principais objetivos dos pesquisadores para essa segunda etapa está aprofundar os estudos sobre o Bóson de Higgs e descobrir novas partículas que não pertençam ao Modelo Padrão.

Bóson de Higgs

Na primeira fase de experimentos do acelerador, o Bóson de Higgs foi descoberto – era a última partícula do Modelo Padrão que ainda não havia sido detectada. Sua massa foi calculada com uma boa precisão: 125 GeV, com um erro de 0,21 para mais ou para menos. Entretanto, ainda há muito para se descobrir sobre essa partícula.

“O LHC tentará fazer medidas mais precisas das propriedades do Bóson de Higgs e de como ele interage com outras partículas”, diz Gero von Gersdorff, pós-doutorando do ICTP-SAIFR. “A maneira como ele decai, por exemplo, pode trazer mais informações. Além disso, um grande problema em Física de Partículas é explicar por que a massa do Bóson de Higgs é tão pequena. Muitos físicos acreditam que a explicação para isso está em uma das teorias que tentam complementar o Modelo Padrão”.

lhc2

Além do Modelo Padrão

Com o Modelo Padrão completo, qualquer nova partícula descoberta exigirá uma extensão do modelo. Entre as teorias mais estudadas atualmente que propõem essa extensão estão a Supersimetria e a Teoria do Higgs Composto. Na Supersimetria, todas as partículas do Modelo Padrão possuem uma partícula com massa e carga elétrica equivalentes, porém com spin diferente. Na Teoria do Higgs Composto, o Bóson de Higgs não é uma partícula fundamental, ou seja, ele é composto por outras subpartículas. Com energias mais altas, o LHC poderá detectar partículas com massas maiores e fornecer as primeiras evidências experimentais para uma dessas teorias.

“As partículas supersimétricas teoricamente mais fáceis de serem detectadas são os squarks e os gluínos, pares supersimétricos dos quarks e glúons, respectivamente”, diz Alberto Tonero, pós-doutorando do ICTP-SAIFR. “Na verdade, a detecção dessas partículas já era esperada na primeira etapa de experimentos do LHC. No modelo atual, então, a supersimetria não seria exata, pois as partículas que procuramos teriam uma massa maior. Caso elas sejam detectadas agora e sua natureza supersimétrica seja confirmada, apesar de não comprovar a teoria da Supersimetria, será um forte indício de que ela está correta”.

A segunda fase de experimentos do LHC será realizada até 2018, quando o acelerador será desligado novamente. Uma terceira fase já está confirmada, e deverá começar em 2020 ou 2021.

LHC restarts after two years

Written by Ricardo Aguiar on April 30th, 2015. Posted in ICTP-SAIFR Blog

The world’s largest particle accelerator was turned on in April and is expected to start collecting data in June

lhc

LHC operators confirm the first circulation of beams in the accelerator after two years (Image: Maximilien Brice/CERN)

 

The Large Hadron Collider (LHC), the largest particle accelerator in the world, was turned on again this month after a two-year period of maintenance and upgrades. Although not yet ready to make collisions, on the 5th of April two proton beams circulated in the equipment with relative low energy. Data collection is expected to homework writing begin in June, with an energy of 13 TeV – which would increase the LHC’s own record of 8 TeV.

Among the main objectives of the researchers for this second run is to further study the Higgs Boson and to discover new particles that are not predicted by the Standard Model.

Higgs Boson

In the first run of the accelerator the Higgs boson was discovered – it was the last particle of the Standard Model that had not been detected yet. Its mass was calculated with good precision: 125 GeV with an error of 0.21 for more or less. However, there is still much to learn about this particle.

“The LHC will try to make more precise measurements of the Higgs Boson properties look here http://samedayessays.org/buy-essay/and how it interacts with other particles,” says Gero von Gersdorff, postdoctoral at ICTP-SAIFR. “The way it decays, for example, can provide more information. Furthermore, a great problem in particle physics is why the mass of the Higgs is so small. Many physicists expect that this should be explained by a theory beyond the Standard Model”.

lhc2

Beyond the Standard Model

With the Standard Model complete, any new particle that is discovered will require an extension of the model. Among the most studied theories that propose such extensions are Supersymmetry and the Composite Higgs models. In Supersymmetry, all Standard Model particles have a partner particle with the same physical properties, but with different spin. In Composite Higgs models, the Higgs Boson is not a fundamental particle, that is, it consists of other sub-particles. With higher energies, the LHC will be able to detect particles with larger masses and provide the first experimental evidence for these theories.

“The supersymmetric particles that are theoretically easier to detect are the squarks and gluinos, supersymmetric partners of quarks and gluons, respectively,” says Alberto Tonero, postdoctoral at ICTP-SAIFR. “In fact, the detection of these particles was expected in the first LHC run. That means that in the current model the supersymmetry wouldn’t be exact for paper editing writing, as the particles that we are looking for would have a bigger mass. If they are detected now and their supersymmetric nature is confirmed, although it will not prove Supersymmetry, it will be a strong evidence that it is correct.”

The second phase of LHC experiments will be held until 2018, when the accelerator will be turned off again. A third phase is already confirmed and should start in 2020 or 2021.

Entrevista: Roberto Kraenkel

Written by Ricardo Aguiar on April 22nd, 2015. Posted in Blog do ICTP-SAIFR

Pesquisador do IFT é um dos criadores do site Águas Futuras, que faz previsões sobre os níveis de água do sistema Cantareira

foto3bis (2)

 

Roberto Kraenkel é físico e pesquisador no Instituto de Física Teórica da Unesp. Com o colega Paulo Inácio Prado, biólogo da USP, e o pós-doutorando Renato Mendes Coutinho, criou o site Águas Futuras, que faz previsões sobre os níveis de água do Sistema Cantareira. A página da Internet foi colocada no ar dia 14 de abril, e é muito mais do que um modelo matemático para saber se o volume do Cantareira irá aumentar ou diminuir nos próximos dias; é, também, uma tentativa de tornar mais qualificada a discussão sobre um gravíssimo problema que afeta a maior cidade do país, e de mostrar como a ciência pode contribuir para resolvê-lo, evitar novas crises e melhorar a gestão de recursos hídricos do estado e do país.

 

Conheça o site Águas Futuras: http://cantareira.github.io/

 

Ricardo Aguiar – Prof. Kraenkel, como surgiu a ideia de fazer esse projeto?

Roberto Kraenkel – Ao longo do ano passado, acompanhamos a grave crise de água que afetou, e ainda está afetando, a cidade e o estado de São Paulo. Percebemos que as discussões a respeito desse assunto eram extremamente desqualificadas. Queríamos entender melhor esse problema e tentar contribuir para tornar essa discussão pública mais qualificada.

Como trabalhamos com modelos matemáticos, buscamos entender a dinâmica de um reservatório de água – por exemplo, a taxa de absorção de água depende do volume do sistema naquele momento? Quais são os fatores mais importantes para prever e evitar crises como essa?

RA – Como funciona o modelo que criaram?

RK – Para construir o modelo usamos dados do Sistema Cantareira. O volume de água do sistema depende da quantidade de água que entra – a vazão afluente – e da quantidade de água que sai – a vazão efluente.

A quantidade que entra depende das chuvas, mas depende também do volume do sistema. Quando cheio, o sistema absorve mais água – a chuva cai diretamente na água do reservatório. Quando vazio, o sistema absorve menos água – a chuva cai também sobre o solo, que a absorve.

A quantidade que sai depende de quanta água a Sabesp retira por dia. Essa quantidade antes da crise era, em média, de 33m3/s. Com a crise, passou para 14m3/s. Embora não se fale em racionamento, fica claro que a Sabesp está enviando menos água para abastecer a cidade.

Para fazer as projeções, nos baseamos nas taxas de chuva de anos anteriores. Fizemos projeções baseadas em três cenários: com as chuvas desse ano se mantendo na média dos anos anteriores; com as chuvas desse ano ficando abaixo da média; e com as chuvas desse ano ficando acima da média. Desse modo, contemplamos desde o cenário mais pessimista até o cenário mais otimista.

RA – Como está a atual situação do Sistema Cantareira e quais as previsões mais otimistas e pessimistas?

RK – O Sistema Cantareira ainda não conseguiu recuperar o volume morto utilizado na crise.

O volume morto representa cerca de 22,6% do volume total do sistema. Atualmente, o Cantareira está com pouco mais de 15% de seu volume. Isso significa que precisamos subir mais 7 pontos percentuais para recuperarmos o volume morto.

projeção

Para manter nossas projeções precisas, fazemos previsões para no máximo 30 dias. No momento, a previsão mais otimista para daqui um mês é que o Sistema Cantareira esteja com 17,6% de sua capacidade. O mais pessimista é que esteja com apenas 12,9%.

Todas as outras projeções podem ser encontradas em nosso site.

RA – Como foi acessar os dados da Sabesp?

RK – Tivemos muita dificuldade para acessar os dados da Sabesp. Todas as informações estão disponíveis em uma página da Internet, porém não há links para essa página. Conseguimos achá-la através de contatos que temos, e se não fosse por isso não teríamos conseguido fazer o modelo.

Gostaríamos de usar esse modelo para fazer projeções para outros reservatórios também, mas é justamente pela dificuldade de acessar informações que ainda não conseguimos. Em outros estados, simplesmente não há dados disponíveis.

RA – Quais os próximos passos do projeto?

RK – Gostaríamos de elaborar um modelo que pudesse prever crises com antecipação.

O Cantareira tinha um sistema que previa crises. Até o início de 2014, esse sistema não indicava crise alguma. Hoje sabemos que ele estava errado e falhou.

Entretanto, volto a dizer que nosso objetivo é tornar a discussão pública sobre esse gravíssimo problema mais qualificada. Criamos um site, totalmente público, para que todos possam ter acesso a essa informação. Não queríamos simplesmente publicar mais um artigo científico; queríamos contribuir para a resolução de um problema na sociedade.

Cem anos da Relatividade Geral

Written by Ricardo Aguiar on April 13th, 2015. Posted in Blog do ICTP-SAIFR

Teoria, proposta por Albert Einstein em 1915, revolucionou a Física e mudou a maneira de entender o espaço, o tempo, a luz e o universo

einstein

A Teoria da Relatividade Geral, proposta por Albert Einstein em 1915, revolucionou a Física e mudou a maneira como nós entendemos o espaço, o tempo, a luz e o universo. Cem anos depois ela continua a ter uma importância fundamental, e prevê fenômenos, como as ondas gravitacionais, que foram detectadas indiretamente apenas na década de 70. Entretanto, há observações que a teoria não explica. Além de ser incompatível com a Mecânica Quântica, a Relatividade Geral não prevê a expansão acelerada do universo e não descreve corretamente a velocidade de rotação de estrelas em torno do centro de galáxias. A melhor solução para esses mistérios são a energia escura e a matéria escura, substâncias cujas existências ainda não foram comprovadas.

“Matéria escura e energia escura são maneiras de entender certas anomalias”, diz Scott Dodelson, pesquisador norte-americano do Fermilab e professor na Universidade de Chicago. “Na verdade, elas podem nem mesmo existir. Pode ser que a nossa compreensão da gravidade esteja errada e que a teoria da Relatividade Geral precise ser modificada para que possamos entender o que observamos. Atualmente, uma pergunta fundamental é: será que precisamos modificar a teoria ou será que essas substâncias realmente existem?”

Matéria e energia escura

Uma das anomalias citadas por Dodelson é a velocidade com que estrelas giram em torno do centro de galáxias. A velocidade real é maior do que a prevista pela teoria para a quantidade de matéria que conseguimos ver – a matéria gera força gravitacional, responsável pelo movimento das estrelas. Quanto mais matéria, maior a velocidade de rotação.

Recentemente esse fenômeno foi comprovado também entre o Sol e o centro da Via Láctea. O trabalho foi feito por Fabio Iocco, do IFT/Unesp e do ICTP-SAIFR, em colaboração com pesquisadores europeus.

matéria escura - iocco

Foto da Via Láctea vista do hemisfério sul; o círculo azul no centro ilustra onde haveria matéria escura, de acordo com o estudo de Iocco.

“Há uma possibilidade de a matéria escura não existir, mas, para mim, ela é atualmente a melhor explicação, pois descreve o problema para diferentes escalas e corpos astronômicos”, diz Iocco. “Não sabemos exatamente o que ela é, mas sabemos que é matéria, por gerar força gravitacional, e que não interage com luz. Acredito que nosso trabalho contribuirá com estudos que buscam compreender o que a matéria escura realmente é e como ela está distribuída no universo”.

Outra anomalia é a aceleração de expansão do universo. Para a Relatividade Geral o universo não poderia estar acelerando, pois a matéria como a conhecemos atrai outros corpos, o que desaceleraria a expansão. Os físicos atribuem a aceleração à chamada energia escura, que continua a ser um mistério para a ciência.

 Ondas gravitacionais

Uma das previsões corretas da Relatividade Geral são as ondas gravitacionais. Antes da teoria, acreditava-se que o efeito da gravidade era instantâneo. Para isso, a velocidade de propagação da força teria que ser infinita. Em sua Teoria da Relatividade Especial, contudo, Einstein previu que nada viaja em velocidades superiores à da luz. A gravidade teria que se propagar através das ondas gravitacionais.

Por interagirem muito fracamente com a matéria, essas ondas são difíceis de detectar. A comprovação de que elas existiam foi feita em 1974 por Russell Hulse e Joseph Taylor, ao notarem que a órbita de duas estrelas de nêutrons, que giravam uma ao redor da outra, estava diminuindo. O sistema estava perdendo energia, que era liberada na forma de ondas gravitacionais.

gravitational waves nasa

Atualmente, grandes experimentos, como o Virgo, na Itália, e o LIGO, nos Estados Unidos, tentam fazer a detecção direta dessas ondas. Como elas causam uma perturbação no espaço ao se propagar, é possível notar seu efeito em um sistema preciso de lasers e espelhos – a onda alteraria a distância entre os espelhos, em cerca de um milionésimo de um bilionésimo de metro, e o tempo para o laser completar o circuito mudaria.

“A detecção direta de ondas gravitacionais seria importante por diversos motivos”, diz Riccardo Sturani, pesquisador do ICTP-SAIFR e membro da colaboração LIGO. “Poderíamos ver corpos que não emitem luz, mas que emitem ondas gravitacionais, e poderíamos comparar as ondas observadas com as previstas pela Relatividade Geral para verificar se a teoria está realmente correta”.

Relatividade Especial e Relatividade Geral

A Teoria da Relatividade Especial foi formulada por Einstein e outros pesquisadores em 1905 e revolucionou a Física por mudar a forma como vemos o tempo e o espaço.

“Na física Newtoniana esses conceitos eram absolutos”, diz o físico Alberto Saa, da Unicamp. “Ou seja, independentemente de você estar parado ou em movimento, o tempo passa de forma igual e o espaço é o mesmo. Já a Relatividade Especial, como o próprio nome diz, mostrou que o tempo e o espaço são relativos – eles dependem do observador e de sua velocidade. Quanto mais alta a velocidade de um corpo, mais devagar o tempo passará para ele, e mais o espaço se contrairá à sua frente”.

Depois, com Teoria da Relatividade Geral, a gravidade deixou de ser vista como uma interação entre corpos e passou a ser vista como uma deformação no espaço-tempo. A massa de um corpo é responsável por causar uma curvatura que afeta o movimento de outros corpos, atraindo-os para perto de si. Quanto maior a massa, maior a deformação.

curvatura

Além disso, para Newton, a força gravitacional não influenciava a luz. Já para Einstein, massa e energia são equivalentes – como diz sua famosa equação, energia é igual a massa multiplicada pela velocidade da luz ao quadrado, ou E = mc2. Assim, a trajetória de um feixe de luz pode ser alterada pela gravidade.

Uma importante aplicação dessas teorias está nos Global Positioning Systems, os GPSs. Como os satélites que estão em órbita da Terra estão sujeitos a uma força gravitacional diferente da nossa, a teoria de Einstein prevê que seus relógios andariam mais rápido. Quando o primeiro satélite de GPS foi colocado em órbita, o fenômeno foi comprovado experimentalmente. Sem os ajustes que a teoria propõe, o GPS não funcionaria.

Outras teorias

A Relatividade Geral explica fenômenos de escalas macroscópicas, porém não se sabe como aplicá-la em escalas subatômicas. Para estudar esses fenômenos, a Mecânica Quântica é usada. A conciliação entre as duas é um grande desafio para a Física, e algumas teorias, formuladas ao longo do último século, caminham nessa direção.

A Gravitação Teleparalela, ou Teleparalelismo, é uma delas. Criada na década de 50, ela descreve a gravitação através da torção do universo, e não através da curvatura, como a Relatividade Geral. O Teleparalelismo se encaixa dentro do esquema das Teoria de Gauge, que explicam, por relações de simetria, as demais interações da natureza – a eletromagnética, a Força Fraca e a Força Forte.

“Uma das principais características do teleparalelismo é que, diferente da Relatividade Geral, ele permite separar a gravitação de efeitos inerciais”, diz José Geraldo Pereira, pesquisador do IFT/Unesp que, junto com Ruben Aldrovandi, contribuiu para a consolidação da teoria e escreveu o primeiro livro dedicado exclusivamente a ela, Teleparallel Gravity: An Introduction, publicado em 2012. “Podemos, assim, definir inequivocamente a energia do campo gravitacional, o que é impossível com a Relatividade Geral. O teleparalelismo também parece ser mais apropriado para estudar fenômenos gravitacionais na escala quântica”.

A Teoria das Cordas também é bastante estudada e tenta complementar a Relatividade Geral para explicar a gravitação na escala quântica. Elaborada na década de 70, ela também é baseada em simetrias e prevê que as partículas são espécies de cordas unidimensionais que estão em constante vibração.

“Atualmente, a Teoria das Cordas é o modelo mais bem aceito para unir a Relatividade Geral com a Mecânica Quântica”, diz Nathan Berkovits, diretor do ICTP-SAIFR e pesquisador do IFT/Unesp. “Com ela conseguimos prever o espalhamento de ondas gravitacionais, incluindo os efeitos quânticos”.

Para Dodelson, a unificação das teorias é um problema teórico, pois não há observações que exijam que elas sejam conciliadas. O pesquisador acredita que ao longo da próxima década, com experimentos em escalas maiores, obteremos mais dados e alguns modelos serão eliminados. A busca por uma “teoria de tudo” continuará.

“Um grande triunfo da Física é sua habilidade de explicar uma abrangente gama de fenômenos com algumas poucas leis”, diz ele. “Esse reducionismo atingiria o seu limite se todas as leis pudessem ser unificadas em uma única teoria. O problema é que, na maioria dos casos, a unificação de ideias é difícil, quando não é impossível, de se testar”.

*Texto publicado na revista Unesp Ciência, número 62, abril/2015. Veja a versão em PDF clicando aqui.

ICTP-SAIFR faz novas parcerias com institutos europeus

Written by Ricardo Aguiar on April 7th, 2015. Posted in Blog do ICTP-SAIFR

Acordos com centros de pesquisa em física teórica de Madrid e Paris promoverão intercâmbio de alunos e professores e organização de eventos

O ICTP-SAIFR assinou, em março, dois novos acordos internacionais que irão facilitar e promover colaborações com o Institut de Physique Théorique (IPhT) CEA-­Saclay, de Paris, e o Instituto de Física Teórica UAM-CSIC, de Madrid. As parcerias encorajarão o intercâmbio de alunos de doutorado, pós-doutorado e professores entre os centros de pesquisa, e a organização de cursos e workshops em áreas de comum interesse. Os acordos têm uma duração inicial de dois anos, mas há a possibilidade de renovação por um período de mais dois anos.

parcerias

Intercâmbio e eventos

Um dos principais aspectos das parcerias é a promoção de intercâmbios, com o objetivo de estimular a criação de vínculos e colaborações internacionais entre alunos e pesquisadores desses institutos.

Entre as áreas de pesquisa de maior interesse do IPhT, destacam-se física de altas energias, física matemática, matéria condensada, gravidade quântica e teoria das cordas. Já o instituto espanhol se concentra mais em áreas como cosmologia e astrofísica.

Além dos intercâmbios, as parcerias também estimularão professores de todos os centros de pesquisa a proporem e organizarem projetos de pesquisa e eventos em conjunto, como workshops e cursos. Para isso, cada instituto terá um coordenador que irá receber as propostas e julgá-las.

Para saber mais, os acordos, e todas as informações sobre eles, podem ser acessados no site do ICTP-SAIFR.

Outros acordos

O ICTP-SAIFR também renovou recentemente acordos com o CERN e o Perimeter Institute, do Canadá.

A parceria com o CERN, que abriga o LHC – atualmente o maior acelerador de partículas do mundo -, estimulará colaborações na área de Física de Partículas e promoverá intercâmbios com o centro de pesquisa da Suiça.  Já a parceria com o Perimeter Institute, que proporcionou eventos no ICTP-SAIFR como o “Programa em Integrabilidade, holografia e o Conformal Bootstrap” e um minicurso sobre Teoria Quântica de Campos, encorajará pesquisas na área de Teoria de Campos.

O ICTP-SAIFR ainda possui acordos em andamento com outros grandes centros de pesquisa em física teórica do mundo. Entre eles, além do ICTP-Trieste, se destacam o Fermilab, em Chicago – maior centro de pesquisa em Física de Partículas do continente, com o qual o ICTP-SAIFR realizará um curso sobre neutrinos em agosto desse ano – e o NORDITA (Instituto de Física Teórica Nórdico), que tem sede na Suécia e faz pesquisas em diversas áreas, como astrofísica, matéria condensada e física de altas energias.