Search Results

Challenges for Witnessing Quantum Aspects of
    Gravity in a Lab

Written by Jandira on January 18th, 2021. Posted in

June 7-11, 2021 (by videoconference)

Zoom ID: 961 2842 0825

Password: gravity

Please send an e-mail to thiago AT ictp-saifr.org, if you have any access problem.

CODE OF CONDUCT (Zoom protocol): click HERE

ICTP-SAIFR, São Paulo, Brazil

 

Home

Understanding gravity in the framework of quantum mechanics is one of the significant challenges in modern physics. Along this line, a primary question is whether gravity is a quantum entity subject to quantum mechanical rules. Despite the purported weakness of gravity, the phase evolution induced by the gravitational interaction of two-micron size test masses in adjacent matter-wave interferometers can detectably entangle them via the exchange of graviton mediation even when they are placed far enough apart to keep Casimir-Polder forces at bay. This prescription for witnessing entanglement certifies gravity as a coherent quantum mediator through simple correlation measurements between two spins: one embedded in each test mass known as a QGEM (quantum gravity induced entanglement of masses) protocol. This workshop will discuss various theoretical and experimental challenges to conceive the QGEM protocol in a lab that will require an unprecedented level of accuracy in witnessing the quantum nature of one of nature’s weakest interactions.

There is no registration fee.

 Speakers:

  • Nancy Aggarwal (Northwestern University, USA): Room temperature optomechanical squeezing
  • Markus Arndt (University of Vienna, Austria): Universal matter-wave interferometry: opportunity and challenges in probing quantum physics at the interface to gravity
  • Markus Aspelmeyer (University of Vienna, Austria): Gravitational coupling of microscopic source masses: challenges for future quantum Cavendish experiments
  • Peter Barker (University College London, UK):  Charged levitated nano-oscillators for testing macroscopic quantum mechanics
  • Chas Blakemore (Stanford University, USA): First search for new long range forces at the micron scale using optically levitated microspheres
  • Sougato Bose (University College London, UK): Quantum Nature of Gravity in the Lab: Assumptions, Implementation and Applications on the Way
  • Daniel Carney (Lawrence Berkley lab, USA): Theory implications from tabletop gravity experiments
  • N.D. Hari Dass (Institute of Mathematical Sciences – Chennai, India): Simple experiments to probe parity violation in Gravitation, and their theoretical implications
  • Brian D’ Urso (Montana University, USA ): Magneto-Gravitational Trapping of SiC Particles Containing Si-Vacancy Centers
  • Ron Folman ( Ben Gurion University, Israel ): Matter-wave interferometers on the atom chip
  • Gerald Gabriele (Northwestern University, USA): One-Particle Quantum Cyclotron
  • Andrew Geraci (Northwestern University, USA): Looking for “fifth forces”, dark matter, and quantum gravity with optomechanical sensors
  • Jan Harms (Gran Sasso Institute, Italy): Terrestrial gravity fluctuations in GW detectors
  • Jack Harris ( Yale University, USA ): Measuring the higher-order phonon statistics in a nanogram volume of superfluid helium
  • Timothy Kovachy ( Northwestern University, USA): Probing gravity nonlocally with macroscopically delocalized atom interferometers
  • Claus Laemmerzahl (University of Bremen, Germany): Effects of space-time fluctuations on quantum systems
  • Tongcang Li  (Purdue University, USA): Ultrasensitive torque detection with an optically levitated nanoparticle
  • Yair Margalit ( MIT, USA ): Towards testing quantum gravity using the full-loop Stern-Gerlach interferometer
  • Ryan Marshman ( University College London, UK ): The design and use of Stern-Gerlach interferometry for Gravitational Experiments
  • Samir Mathur (Ohio State University, USA): Contrasting the fuzzball and wormhole paradigms for resolving the black hole information paradox
  • Anupam Mazumdar (University of Groningen, The Netherlands): Quantum test of Gravity by colliding Schrödinger’s kittens
  • David Moore ( Yale University, USA ): Progress towards the quantum measurement regime with optically levitated nanogram-scale masses
  • Gavin Morley ( Warwick University, UK ): Levitating nanodiamond experiments towards a test of quantum gravity
  • Cristian Panda (Berkley, USA): Probing the interplay of quantum mechanics and gravity using a trapped atom interferometer
  • Maulik Parikh (Arizona State University, USA): The Noise of Gravitons
  • Igor Pikovski (Stockholm University, Sweden): Quantum optics at the interface with gravity
  • Martin Plenio (University of Ulm, Germany): Towards Robust Interferometry with Massive Particles
  • Simone Rijavec (University of Oxford): Decoherence effects in non-classicality tests of gravity
  • Carlo RovelliAix-Marseille University, France ): What do the Gravitational Entanglement Lab Experiments Teach us about Quantum Spacetime
  • Benjamin Stickler (University of Duisburg-Essen, Germany): Quantum rotations of nanoparticles
  • Jacob Taylor (NIST-Baltimore, USA): Quantum information-driven tests of gravitationally-mediated entanglement
  • Marko Toros ( University of Glasgow, UK): Relative Acceleration Noise Mitigation for Nanocrystal Matter-wave Interferometry: Application to Entangling Masses via Quantum Gravity
  • Hendrik Ulbricht (University of Southampton, UK): Probing gravity of quantum systems in the paradigm of levitated mechanics
  • Vlatko Vedral ( Oxford University, UK ): Different degrees of reliability of lab-based tests of quantum aspects of gravity
  • Kathryn Zurek (Caltech, USA): Observational consequences of quantum gravity in interferometers

Organizers:

  • Sougato Bose (University College London, UK)
  • Andrew Geraci ( Northwestern University, USA)
  • Anupam Mazumdar (University of Groningen, The Netherlands)

Registration

Announcement

Online Registration is now closed

Program

Workshop Program (CEST Time) :PDF updated on June 9, 2021

Workshop Program (BRT Time) : PDF updated on June 9, 2021

List of Abstracts: PDF updated on June 9, 2021

Photos

Videos & Files

2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11
Close

asdasdasd

{abstract}

Additional Information

Challenges for Witnessing Quantum Aspects of
    Gravity in a Lab

(teste)Physics Discussions: Donna Strickland (U. Waterloo)

Written by Malena Stariolo on January 18th, 2021. Posted in

 

Home

The laser increased the intensity of light that can be generated by orders of magnitude and thus brought about nonlinear optical interactions with matter. Chirped pulse amplification, also known as CPA, changed the intensity level by a few more orders of magnitude and helped usher in a new type of laser-matter interaction that is referred to as high-intensity laser physics. In this talk, I will discuss the differences between nonlinear optics and high-intensity laser physics. The development of CPA and why short, intense laser pulses can cut transparent material will also be included. I will also discuss future applications.

 

ABOUT THE SPEAKER

Donna Strickland is a professor in the Department of Physics and Astronomy at the University of Waterloo and is one of the recipients of the Nobel Prize in Physics 2018 for developing chirped pulse amplification with Gérard Mourou, her PhD supervisor at the time. They published this Nobel-winning research in 1985 when Strickland was a PhD student at the University of Rochester in New York state. Together they paved the way toward the most intense laser pulses ever created. The research has several applications today in industry and medicine — including the cutting of a patient’s cornea in laser eye surgery, and the machining of small glass parts for use in cell phones.

Strickland was a research associate at the National Research Council Canada, a physicist at Lawrence Livermore National Laboratory and a member of technical staff at Princeton University. In 1997, she joined the University of Waterloo, where her ultrafast laser group develops high-intensity laser systems for nonlinear optics investigations.

Strickland was named a Companion of the Order of Canada. She is a recipient of a Sloan Research Fellowship, a Premier’s Research Excellence Award and a Cottrell Scholar Award.  She received the Rochester Distinguished Scholar Award and the Eastman Medal from the University of Rochester. Strickland served as the president of the Optical Society (OSA) in 2013 and is a fellow of OSA, the Royal Society of Canada, and SPIE (International Society for Optics and Photonics). She is an honorary fellow of the Canadian Academy of Engineering as well as the Institute of Physics. She received the Golden Plate Award from the Academy of Achievement and holds numerous honorary doctorates.

Strickland earned a PhD in optics from the University of Rochester and a B.Eng. from McMaster University.

 

PROGRAM (Brasilia time, BRT)

Wednesday, January 27

Speaker: Donna Strickland (University of Waterloo, 2018 Nobel Laureate)
Title: From Nonlinear Optics to High-Intensity Laser Physics
13:40-14:00 Discussion (for graduate students)
14:00-15:00 Coloquium
15:00-15:20 Discussion (for graduate students)

 

The Registration form for graduate students who would like to participate via Zoom is HERE

The Youtube link for the colloquium transmitted live will be posted on this website.

About Physics Discussions

ICTP-SAIFR/IFT-UNESP Physics Discussions is a new bi-weekly colloquium/discussion for graduate students and researchers. In addition to a 60-minute colloquium for all, the activity includes a 20-minute discussion of research and career choices before the colloquium and a 20-minute discussion of physics after the colloquium just for graduate students. The colloquium will be broadcast live on Youtube, but the discussion session before and after the colloquium will use a Zoom platform restricted to graduate students which has limited space.

The Registration form for graduate students who would like to participate via Zoom is HERE

The Youtube link for the colloquium transmitted live will be posted on this website.

 

PROGRAM (Brasilia time, BRT)

Wednesday, January 27

Speaker: Donna Strickland (University of Waterloo, 2018 Nobel Laureate)

Title: From Nonlinear Optics to High-Intensity Laser Physics

13:40-14:00 Discussion (for graduate students)

14:00-15:00 Coloquium

15:00-15:20 Discussion (for graduate students)

 

Wednesday, February 10

Speaker: Ignacio Cirac (Max Planck Institute of Quantum Optics, Garching)

Title: Quantum Computers and Many-Body Systems

13:40-14:00 Discussion (for graduate students)

14:00-15:00 Coloquium

15:00-15:20 Discussion (for graduate students)

 

Wednesday, February 24

Speaker: Steven Strogatz (Cornell University)

Title: Networks of Oscillators that Synchronize Themselves

10:40-11:00 Discussion (for graduate students)

11:00-12:00 Coloquium

12:00-12:20 Discussion (for graduate students)

 

Announcement

(teste)Physics Discussions: Donna Strickland (U. Waterloo)

Pesquisa sobre competição subterrânea entre plantas na revista Science

Written by Artur Alegre on January 14th, 2021. Posted in Blog do ICTP-SAIFR

Abaixo da superfície, plantas travam uma constante disputa pelo espaço e recursos presentes no solo. Embora ocorra escondida do olhar humano, o entendimento da complexa dinâmica de raízes no subsolo pode trazer consequências muito significativas para a sociedade, abrangendo desde a criação de plantios mais sustentáveis e eficientes, até o estabelecimento de estratégias de mitigação de efeitos climáticos. No estudo The exploitative segregation of plant roots, publicado em 4 de dezembro na revista Science, é apresentado um modelo matemático capaz de mapear as interações entre raízes de plantas que acontecem embaixo da terra, dando uma nova luz ao entendimento de um mecanismo ecológico fundamental. O trabalho foi desenvolvido por um grupo de pesquisadores de instituições do Brasil, Espanha e Estados Unidos, e contou com a participação de Ricardo Martínez-García, professor SIMONS-FAPESP no Instituto Sul-Americano para Pesquisa Fundamental (ICTP-SAIFR) e no Instituto de Física Teórica da UNESP (IFT-UNESP), como um dos principais autores da pesquisa.

Raízes tingidas de plantas de pimenta. O tingimento é empregado como método de diferenciação entre raízes de plantas vizinhas para facilitar o estudo de sua interação. Imagem cedida por Ciro Cabal.

Em entrevista concedida por videoconferência ao ICTP-SAIFR, o professor Martínez-García fala sobre algumas das motivações do trabalho: “Muito da dinâmica dos ecossistemas na verdade acontece abaixo da terra. Se nós pretendemos entender como os ecossistemas funcionam, e como, por exemplo, respondem a mudanças globais, nós precisamos compreender o que acontece no subsolo. Não basta apenas entender a parte que conseguimos observar.” Martínez-García dedica sua pesquisa à área da Física aplicada à Biologia, em especial ao desenvolvimento de modelos físico-matemáticos para estudar sistemas ecológicos complexos, e foi um dos responsáveis pelo desenvolvimento teórico neste estudo.

O modelo apresentado neste trabalho simula o balanço entre a quantidade de energia gasta por uma planta para produzir uma certa quantidade de raiz em uma dada direção, em relação ao ganho de recursos – nesse caso, absorção de água – que a planta terá ao produzi-la. O professor exemplifica: “Em cada ponto do espaço, uma planta somente vai colocar raízes se o recurso nesse ponto é suficientemente alto para devolver um benefício para ela. (…) Para uma planta absorver recursos a 2 m do seu caule, é mais custoso do que a 10 cm, pois como ela não pode se deslocar, precisa fazer uma raiz mais longa. Construir todo esse mecanismo mais longo é energeticamente mais custoso para ela. Então esse é o balanço.” A presença de uma segunda planta na vizinhança muda a dinâmica dessa balanço, pois nesse cenário os dois organismos passam a competir pela água disponível no solo ao redor. Dessa maneira a distribuição de raízes no solo ganha um grau de complexidade maior. “Imagine que você tem uma certa quantidade de água em um ponto do espaço. Esse ponto fica a 2 m de uma planta e a 0,5 m de outra. Mesmo que as duas dividissem essa quantia de água de maneira idêntica, para uma planta o custo seria menor do que para a outra. O benefício da planta que está mais perto é maior, por isso as plantas se espalham menos quando têm vizinhas.

Embora essa relação seja simples o bastante de compreender, o caminho para se chegar a um modelo matemático capaz de simular precisamente a proporção em que esse balanço ocorre exige uma base matemática muito forte. De fato, uma das coisas mais interessantes sobre o modelo, explica o professor, é o fato de ele ter sido inspirado por uma aparente contradição existente em modelos predecessores. “Dentre os grupos de pesquisa que já buscaram entender esse processo, de como plantas mudam seu sistema de raízes na presença de outras plantas, tinha duas maneiras de responder essa pergunta: havia grupos de pesquisadores que não consideravam a distribuição no espaço, medindo apenas a massa total de raiz produzida. Desses estudos concluiu-se que se uma planta tem uma vizinha próxima, ela irá gerar mais raiz: a resposta de uma planta a uma competição por recursos seria ter mais raízes, para tentar absorver mais, e mais rápido.”

“Outro grupo apenas mediu quanto espaço a planta cobre com suas raízes. No lugar de se perguntar quanta massa de raiz as plantas geram, perguntou-se de que maneira o território do qual a planta absorve água muda na presença de uma vizinha. A conclusão foi que neste caso as plantas ocupam um território menor, espalhando-se menos. Aí ficou uma contradição, pois se há um espalhamento menor, como você produz mais raiz?”, aponta o professor. Uma maior densidade de raízes, explica, poderia responder essa aparente contradição, mas os modelos até então não possuíam informação suficiente para afirmar que este seria o caso. “Então o que nós fizemos foi um modelo geral que introduz o espalhamento das plantas junto com a quantidade de raiz em cada local do espaço. Leva em consideração as duas coisas. E com a técnica experimental que usamos, conseguimos fazer uma reconstrução espacial completa. (…) A conclusão geral na qual chegamos foi justamente que: sim, as plantas se espalham menos na presença de uma vizinha, sendo mais locais na procura de recursos, mas nas suas proximidades elas se tornam mais agressivas, isto é, produzem mais raízes perto do próprio caule.” 

Ricardo Martínez-García é professor SIMONS-FAPESP no ICTP-SAIFR e no IFT-UNESP. Sua pesquisa busca empregar técnicas computacionais e de Física Estatística para examinar a formação de padrões de organização em sistemas biológicos complexos, e abrange desde estudos com micróbios até plantas e paisagens inteiras. Imagem cedida por Ricardo Martínez-García.

As predições do modelo foram testadas em um experimento conduzido no Instituto de Ciências Agrárias de Madri, na Espanha. O teste foi feito em uma variedade de espécies de plantas de pimenta, cultivadas em estufa por 11 meses sob condições muito controladas para esse experimento. “É comum na Biologia você fazer um experimento com uma espécie modelo. (…) Nós usamos a planta de pimenta pois o Ciro Cabal, que é o autor principal do artigo, já conhecia o organismo para cultivá-lo de uma maneira mais controlada. Uma vez que você descobre um mecanismo num organismo modelo, aí vem a questão de como generalizar para outras espécies, do quão geral o modelo é etc.” É a mesma lógica, comenta o professor, do uso de ratos de laboratório em estudos sobre doenças humanas. Após o crescimento das plantas, caules e folhas foram cortados e colhidos. As raízes, ainda no solo, foram tingidas com pigmentos de cores diferentes, a fim de permitir o reconhecimento de cada planta em meio ao emaranhado de raízes. “Depois de colorir as plantas, fizemos diversas pequenas divisões no solo, e então pudemos ver o quanto cada planta possuía de raiz em cada divisão. Com isso, conseguimos construir um mapa espacial das raízes de cada planta.”

“Quando o Ciro Cabal escreveu para mim com os resultados dos experimentos realizados, e a figura do experimento era a mesma que uma das figuras do nosso modelo, para mim essa foi a maior satisfação. Não apenas de um ponto de vista pessoal, mas por se tratar de um mecanismo fundamental da Ecologia que ainda não era conhecido.”, relata o professor. Para além da contribuição para a ciência de base, a existência de um modelo matemático como esse, capaz de descrever a competição entre plantas que se passa no subsolo, pode trazer implicações muito expressivas para a maneira como é feita agricultura, permitindo a criação de um sistema de plantio otimizado e o aumento da produção de alimentos. “Se eu colocar 15 cm entre as minhas plantas, elas irão investir menos em produção de raízes e mais em produção de frutas, por exemplo. Isso pode aumentar muito a eficiência de cultivos com um investimento de água menor.”, conjectura o professor. Além disso, as raízes constituem uma grande reserva de carbono, que armazena aproximadamente um terço de toda a biomassa de plantas do planeta. Por isso, uma melhor compreensão do seu comportamento permitirá o desenvolvimento de melhores modelos de grande escala, com os quais cenários de mudanças climáticas  podem ser simulados.

Desse ponto em diante, o trabalho de Martínez-García e seus colaboradores deve seguir rumo ao aprofundamento do modelo: estudar as interações envolvendo sistemas com mais de duas plantas, espécies diferentes e em condições climáticas distintas esses são alguns dos próximos passos na lista dos pesquisadores. “O que fizemos foi uma primeira contribuição, dar uma ideia dos mecanismos que dominam esses padrões espaciais de raízes. Evidentemente há muito mais trabalho para fazer, mas encaixar a primeira peça é uma grande satisfação.”, conclui o professor. 

——————————————————————————————————————————-

O artigo The exploitative segregation of plant roots, publicado em 4 de dezembro de 2020 na revista Science, é de autoria de Ciro Cabal (Universidade de Princeton, Estados Unidos), Ricardo Martínez-García (ICTP-SAIFR/IFT-UNESP, Brasil), Aurora de Castro (Museu Nacional de Ciências Naturais, Espanha), Fernando Valladares (Museu Nacional de Ciências Naturais/Universidade Rei Juan Carlos, Espanha) e Stephen W. Pacala (Universidade de Princeton, Estados Unidos).

Reuven Opher Memorial Symposium

Written by Jandira on December 17th, 2020. Posted in

January 23, 2021 (by videoconference)

Zoom ID: 946 3098 4298

Password: cosmo

Please send an e-mail to thiago AT ictp-saifr.org, if you have any access problem.

ICTP-SAIFR, São Paulo, Brazil

Home

Reuven Opher, Emeritus Professor at the Institute of Astronomy, Geophysics and Atmospheric Sciences of the University of São Paulo (IAG-USP), passed away on November 28, 2020. He was 88 years old and he has touched the lives of many people during his long career.

Reuven was born Raymond Fox in New York City in 1932. He obtained his PhD in 1958 from Harvard University in the field of experimental nuclear physics, having the Nobel laureate Norman Ramsey as thesis advisor. He immigrated to Israel in 1962, where he adopted his hebrew name. Between 1962 and 1982, he worked at the Israel Institute of Technology (Technion), where he became full Professor.

Starting in 1978, he spent a couple of sabbatical years at the former CRAAM-ON Institute in São Paulo. He was then invited to work at the Astronomy Department of IAG-USP, where he stayed until his retirement in 2002. He then joined the Senior Teaching program and continued to work at IAG-USP until 2014, and in 2015 he became an Emeritus Professor of the University of São Paulo. Finally, he moved back to the US where his twin daughters have very successful academic careers in Physics and Astrophysics. He was living in New York City, where he was active in teaching courses at the Institute for Retired Professionals.

At IAG-USP, Reuven introduced the research area of Plasma Astrophysics, supervising many graduate students in studies of fundamental plasma processes applied to compact objects, galactic and extragalactic astrophysics, and cosmology. Most of his former students are currently professors in different institutions in Brazil and abroad. In his long professional career of more than 60 uninterrupted years of activity Reuven published hundreds of articles in several different fields. He was also the creator of the series of conferences “New Physics in Space” (since 2002) and “Challenges of New Physics in Space (since 2008), which had a huge impact on the astrophysical community in Brazil.

This one-day Symposium honors Reuven’s incredibly diverse career and brings together friends, colleagues, former students and family members to remember his accomplishments and his influence on their lives.

There will be no registration form and everybody is welcome to participate.

Announcement

 

Organizers:

  • José Carlos Neves de Araújo (INPE, Brazil)
  • Vera Jatenco (IAG-USP, Brazil)
  • Elisabete M. de Gouveia Dal Pino (IAG-USP, Brazil)
  • Rogerio Rosenfeld (IFT-UNESP/ICTP-SAIFR, Brazil)

 

Program

10:00 -10:30 Opening and brief scientific overview – Rogerio Rosenfeld – Video 1

10:30-11:00 Technion years – Stephen Lipson & Yehoshua Felsteiner

11:00-11:15 Break

11:15-11:45 First years in Brazil – Zulema Abraham & Jacques Lepine

11:45-12:15 Opher as a supervisor – Elisabete Maria de Gouveia Dal Pino & Vera Jatenco

12:15-14:00 Lunch and open Zoom

14:00-14:15 Nova Física no Espaço – George Matsas – Video 2

14:15-14:30 Challenges of New Physics in Space – Ioav Waga

14:30-14:45 Break

14:45-15:00 Sarah White

15:00-15:30 Michal Lipson & Merav Opher

15:30 – 16:00 Testimonies from the participants

Closing: Vera Jatenco and José Carlos Neves de Araújo

Additional Information

Reuven Opher Memorial Symposium

teste slider

Written by Malena Stariolo on December 15th, 2020. Posted in

Testes sliders

slider 1

slider 2

slider 3

Filmed at IFT-UNESP and Principia Institute during the ICTP-SAIFR 12th Anniversary Symposium, this 12-minute video produced and directed by Celina Lerner (ICTP-SAIFR) presents different perspectives on ICTP-SAIFR through interviews with distinguished physicists.

The seventh edition of the Perimeter-SAIFR-IFT Journeys into Theoretical Physics will take place from July 22–28. Top students will be offered master’s fellowships to spend one year in São Paulo and one year in the Perimeter Scholars International program, with all costs covered. The application deadline is May 18, 2024.

Each year since 2004, the ICTP-SAIFR Competition for Young Physicists offers cash prizes to the best undergraduate students selected through a written exam. The next edition will be on July 27, 2024. Candidates approved for the Journeys into Theoretical Physics school are automatically registered. Other candidates must apply until July 20, 2024.

Learn how to become a FRIEND OF SAIFR and join forces with us!
previous arrow
next arrow
Slider

Threats and Contributions of AI to Democracy and Society

Written by Jandira on December 11th, 2020. Posted in

Threats and Contributions of AI to Democracy and Society

Strings Practical Info

Written by Malena Stariolo on December 2nd, 2020. Posted in

June 21 - July 2, 2021 | ICTP-SAIFR, São Paulo​

  • 00Days
  • 00Hours
  • 00Minutes
  • 00Seconds

Practical Info

Click here for visa information and directions to the ICTP-SAIFR institute. Other relevant practical information related to STRINGS 2021 will be posted on this webpage.

Please contact secretary@ictp-saifr.org with any practical questions.

Directions

Mackenzie University
Gazeta Theatre

Strings Program

Written by Malena Stariolo on December 2nd, 2020. Posted in

June 21 - July 2, 2021 | ICTP-SAIFR, São Paulo

Click HERE for homepage

Click HERE for outreach activities

Schedule

Opening and Closing Talks

  • Atish Dabholkar – Opening Remarks – Video
  • Hirosi Ooguri – Summary Talk – Video – PDF

Review Talks

  • Ofer AharonyEffective strings – Videos – PDF
  • Alfredo GuevaraAmplitudes and general relativity – Video – PDF
  • Shota KomatsuIntegrability in AdS/CFT – Video – PDF
  • Sabrina PasterskiCelestial amplitudes – Video – PDF
  • Leonardo RastelliBootstrap, EFTs and dispersion relations – Video – PDF
  • Oliver SchlottererString amplitudes – Video – PDF
  • Shu-Heng ShaoSymmetries and their generalizations in topological phases of matter – Video – PDF
  • Stephen Shenker – Black holes, wormholes, long times and ensembles – Video – PDF
  • Irene ValenzuelaSwampland – Video – PDF

Discussion Sessions

  • João Penedones and Alexander Zhiboedov –  S-matrix bootstrap – Video – PDF
  • David Gross and Gabriele Veneziano – High energy limit of string theory – Video – PDF
  • Yuji Okawa and Barton Zwiebach  – Achievements, progress and open questions in string field theory – Video – PDF
  • Juan Maldacena and Samir Mathur – Structure of black hole microstates – Video – PDF Juan – PDF Samir
  • Mirjam Cvetic and Gary Shiu – String universality, particle physics and cosmology – Video – PDF Gary – PDF Mirjam
  • Daniel Baumann and Eva Silverstein – Cosmology and string theory – Video – PDF Eva – PDF Daniel
  • Shamit Kachru and Fernando Quevedo De Sitter constructions from string theory – Video – PDF Shamit – PDF Fernando
  • Netta Engelhardt and Rob Myers – Black hole information problem – Video – PDF
  • Jan de Boer, Douglas Stanford and Stephen Shenker – Ensemble averages and wormholes – Video – PDF Jan – PDF Douglas
  • Sergei Dubovsky and Igor KlebanovQCD string – Video – PDF Igor – PDF Sergei
  • Michael Douglas and Fabian Ruehle – Artificial intelligence and string theory – Video – PDF Michael – PDF Fabian
  • Miranda Cheng, Chiara Nappi, Shruti Paranjape and Silvia Penati – 4 generations of women in string theory – Video – PDF
  • Freddy Cachazo and Lionel Mason  Worldsheet approaches to field theory amplitudes – Video – PDF Freddy – PDF Lionel
  • Rajesh Gopakumar and Xi Yin – Proving dualities – Video – PDF Xi – PDF Rajesh
  • Vladimir Kazakov and Gregory Korchemsky – Lessons from integrability – Video – PDF
  • Nathan Seiberg and Xiao-Gang Wen – New phases of matter – Video – PDF Nathan – PDF Xiao-Gang
  • Nima Arkani-Hamed and Lance Dixon – Particle physics challenges – Video – PDF Nima – PDF Lance
  • Andy Strominger and Tomasz Taylor – Celestial holography – Video – PDF Andy – PDF Tomasz
  • Michael Green, John Schwarz and Edward Witten – Some perspectives on string theory – Video – PDF Michael – PDF John – PDF Edward

Research Talks

  • Lara Anderson – Progress on string compactifications – Video – PDF
  • Simon Caron-Huot – Causality constraints and gravity – Video – PDF
  • Horacio Casini – Generalized symmetries, algebras and entropy – Video – PDF
  • Frank Coronado – Ten dimensional symmetry of N=4 SYM correlators – Video – PDF
  • Kevin Costello – Integrable theories in four dimensions from twistors – Video – PDF
  • Mykola Dedushenko – Theory-changing interfaces and quantum algebras – Video – PDF
  • Lorenz Eberhardt – Summing over geometries in string theory – Video – PDF
  • Matthias Gaberdiel – The string dual of free N=4 SYM – Video – PDF
  • Jaume Gomis – Infrared phases of 2d QCD – Video – PDF
  • Mariana Graña – The tadpole problem – Video – PDF
  • Alba Grassi – A geometric approach to black hole spectral theory – Video – PDF
  • Kristan Jensen – Wormholes and black hole microstates in AdS/CFT – Video – PDF
  • Clifford Johnson – Quantum gravity microstates from Fredholm determinants – Video – PDF
  • Zohar Komargodski – Higher central charges and gapped boundary – Video – PDF
  • Alex May – Bulk causal features and boundary correlation in AdS/CFT – Video – PDF
  • John McGreevy – Mean string field theory: Landau-Ginzburg theory for one-form symmetries – Video – PDF
  • Thomas Mertens – Liouville and JT quantum gravity – holography and matrix models – Video – PDF
  • Sebastian Mizera – Subtle points about saddle points in the S-matrix theory – Video – PDF
  • Shiraz Minwalla – The Hilbert space of large N Chern-Simons matter theories – Video – PDF
  • Jeff Murugan – On the quantum supremacy of SYK and operator growth on networks – Video – PDF
  • Sameer Murthy – Black holes in AdS5 and phases of 4d SYM – Video – PDF
  • Leopoldo Pando-Zayas – Logarithmic corrections to the entropy of AdS black holes – Video – PDF
  • Geoff Penington – QES without a bath: finding pythons in unexpected places – Video
  • Roger Penrose – Why current string theory cannot resolve the gravitational singularity issue – Video
  • Pavel Putrov – Spin-cobordisms, surgeries, and fermionic modular bootstrap – Video – PDF
  • Mukund Rangamani – Real-time holography, replicas, and open quantum systems – Video – PDF
  • Sakura Schafer-Nameki – Higher-form symmetries in string/M-theory – Video – PDF
  • Ashoke Sen – D-instanton contribution to string amplitudes – Video – PDF
  • Xavier Siemens – Results from the NANOGrav search for nanohertz gravitational waves and cosmic strings – Video
  • Dam Thanh Son – Some new developments in fractional quantum Hall effect – Video – PDF
  • Yuji Tachikawa – On global anomalies of heterotic string theories – Streamed Video Pre-recorded Video – PDF
  • Gregory Tarnopolsky – Operator spectrum and spontaneous symmetry breaking in SYK-like models – Video – PDF
  • Gonzalo Torroba – Hyperbolic compactification of M-theory and de Sitter quantum gravity – Video – PDF
  • Cumrun Vafa – Finiteness, compactness, desert, and the swampland – Video – PDF
  • Anastasia Volovich – Recent developments in N=4 Yang-Mills amplitudes – Video – PDF
  • Congkao Wen – Exact results and modular invariance of integrated correlators in N=4 SYM – Video – PDF
  • Ying Zhao – Diagnosing collisions in the interior of a wormhole – Video – PDFhttps://www.ictp-saifr.org/wp-content/uploads/2021/10/Dam-Than-Son.pdf

Gong Show Talks

  • Alek Bedroya – Thermal de Sitter and the swampland – Video – PDF
  • Akash Goel – Towards a string dual of SYK – Video – PDF
  • Eduardo Gonzalo – New constraints on neutrinos from the swampland – Video – PDF
  • Yangrui Hu – Solving a 40-year-old problem: 11D superfield (shared talk) – Video – PDF
  • Jonah Kudler-Flam – Distinguishing random states and black holes – Video – PDF
  • Suman Kundu – Bounds on Regge growth of flat space scattering from bounds on chaos – Video – PDF
  • Hazel Mak – Solving a 40-year-old problem: 11D superfield (shared talk) – Video – PDF
  • Sruthi Narayanan – State-operator correspondence in celestial conformal field theory – Video – PDF
  • Erez Urbach – The entanglement entropy of typical pure states and replica wormholes – Video – PDF
  • Ahmadullah Zahed – Quantum field theory and the Bieberbach conjecture – Video – PDF
  • Zhenghao Zhong – Magnetic quivers and SCFTs – Video – PDF
  • Poster Session

    • Click here for posters in breakout rooms.
    logos2.png

    strings participants

    Written by Malena Stariolo on December 2nd, 2020. Posted in

    June 21 - July 2, 2021 | ICTP-SAIFR, São Paulo​

    • 00Days
    • 00Hours
    • 00Minutes
    • 00Seconds

    List of Participants

    soon@172x.png

    Strings Outreach Activities

    Written by Malena Stariolo on December 2nd, 2020. Posted in

    June 21 - July 2, 2021 | ICTP-SAIFR, São Paulo

    These two outreach activities will be transmitted live in both English and Portuguese at the Youtube links:

     
    Saturday, June 26 (English): youtu.be/TA7h_XrDqd4
     
    Sunday, June 27 (English): youtu.be/WwmxaXTnGMI
     
     
    Sábado, 26 de junho (Português): youtu.be/yj6xQcC_qEs
     
    Domingo, 27 de junho (Português): youtu.be/s1tb3e7Lx50

    Questions to the speakers should be sent by Youtube chat in either Portuguese or English. This outreach webpage is also available in Portuguese at http://outreach.ictp-saifr.org/pl-strings/

    Outreach activities

    gates

    How to describe quantum gravity particles & physics from a starship

    Saturday June 26    14:00 BRT

    Public Lecture by

    Sylvester James Gates Jr.   
    (Brown U, president of American Physical Society)

    How could aliens traveling in a starship correct a human physicist’s calculations in quantum gravity (M-theory)? Solving this involves both relativity and “off-shell” quantum knowledge. Network Theory, from computer science and computational thinking, has provided the foundation for the answer.

    gates
    image2

    “Ask a String Theorist”

    Sunday June 27    14:00 BRT

    with the Strings 2021 speakers, a panel of journalists including Graham Farmelo (Institute for Advanced Study), Jandira Oliveira (ICTP-SAIFR), Marcos Pivetta (Science editor of Pesquisa Fapesp), Henry Reich (MinutePhysics), and the moderator David Gross    (KITP/UC Santa Barbara, 2004 Nobel Laureate).

     In this event, the public will be invited to send questions by Youtube chat which will be selected by the journalists and answered by the Strings 2021 speakers. 

    logos-outreach