Search Results

“Pela primeira vez, podemos afirmar: há matéria escura entre o Sol e o centro da nossa galáxia!”

Written by Ricardo Aguiar on February 9th, 2015. Posted in Blog do ICTP-SAIFR

Fábio Iocco, do IFT/Unesp e do ICTP-SAIFR, é o primeiro autor de um artigo que comprova a presença de matéria escura nessa região do universo

iocco

 

A matéria escura, que vem intrigando os cientistas nas últimas décadas, definitivamente existe também entre o Sol e o centro da Via Láctea. O artigo, “Evidence for dark matter in the inner Milky Way”, publicado hoje na conceituada revista científica Nature Physics, verificou esse fato com altíssima precisão. Essa comprovação pode ser um importante passo para uma melhor compreensão do que é a matéria escura e de como é a sua distribuição no universo.

“As velocidades com que estrelas e outros componentes visíveis da galáxia giram em torno do seu centro é diferente da velocidade calculada com base na quantidade de matéria que conseguimos ver”, diz Iocco. “Então deve existir matéria que não conseguimos ver, a matéria escura”.

Para chegar a essa conclusão, o trabalho de Iocco foi realizado em duas partes. Primeiro, ele e seus colaboradores analisaram as velocidades reais de rotação de estrelas em torno do centro da galáxia para inferir a massa total da Via Láctea. Depois, previram qual deveria ser essa velocidade, baseados na força de gravidade exercida por toda a massa visível da galáxia.

dark matter

No gráfico acima, retirado do artigo de Iocco, a faixa cinza representa a velocidade de rotação esperada em função da distância do centro da galáxia. Os pontos em vermelho representam as velocidades reais observadas.

Os cientistas, então, compararam as duas velocidades. Mesmo levando em conta uma grande margem de erro, as velocidades previstas eram muito menores do que as velocidades reais. Assim como acontece em outras galáxias em espiral, há menos massa visível do que massa total. Isso significa que há massa que não conseguimos ver, ou seja, matéria escura, nessa região analisada. Na verdade, a quantidade de matéria escura pode ser até cinco vezes maior do que a quantidade de matéria visível.

“Pela primeira vez, podemos dizer com certeza que há matéria escura entre o Sol e o centro da Via Láctea”, diz Iocco. “Acredito que nosso trabalho contribuirá com experimentos que buscam compreender o que a matéria escura realmente é e como ela está distribuída no universo”.

O que é matéria escura?

Quando pensamos em uma galáxia, o formato que nos vêm à mente é o de uma galáxia em espiral. É o formato da Via Láctea. Vista de cima, se assemelha a um disco do qual partem vários braços, como um ventilador que tem hélices curvadas.

O que muitas vezes esquecemos é que toda essa estrutura, incluindo estrelas e nuvens de gás, está em constante rotação ao redor do próprio centro. A velocidade com que cada parte da estrutura gira depende da distância que está do centro. Mais especificamente, depende da quantidade de massa que existe entre elas e o centro. A massa exerce força gravitacional, e a força gravitacional gera velocidade. Quanto mais massa, mais força, e maior a velocidade.

milky way

Dados do artigo de Iocco inseridos em uma foto da Via Láctea. O círculo azul-escuro ilustra a região onde deve existir matéria escura segundo a análise dos pesquisadores (Crédito da foto da Via Láctea: Serge Brunier – http://apod.nasa.gov/apod/ap080104.html).

Nas décadas de 70 e 80, cientistas começavam a fazer experimentos para medir a massa de estrelas de outras galáxias, que não necessariamente tinham o formato em espiral, e essa velocidade de rotação de estrelas. Para fazer isso, analisavam a luz que emitiam e que chegava até nós.

No entanto, encontraram um problema. A velocidade que eles observavam era diferente da velocidade prevista pelas equações. Estava faltando massa. Os físicos, então, denominaram essa massa que não conseguiam observar de matéria escura: matéria porque gera força gravitacional; e escura porque não interage com a luz – ela não emite nem absorve sinais luminosos e, portanto, não conseguimos vê-la.

Hoje, sabemos que a matéria escura existe em diversos sistemas do universo, incluindo galáxias em espiral, como a Via Láctea, e galáxias de formatos diferentes. Porém, os elementos que a compõe e o que ela é exatamente continua a ser um mistério.

 

Parceria internacional em Física Teórica

Written by Ricardo Aguiar on February 2nd, 2015. Posted in Blog do ICTP-SAIFR

ICTP-SAIFR trouxe pesquisadores de instituto canadense por 4 meses para estudar a Teoria de Campos

pedro-vieira

Pedro Vieira, do Perimeter Institute

Chega ao fim em fevereiro uma parceria entre o ICTP-SAIFR e o Perimeter Institute, do Canadá, para estudar física teórica. A colaboração promoveu o intercâmbio, por quatro meses, de pesquisadores e alunos de pós-graduação e pós-doutorado. Durante esse período, Pedro Vieira, um dos pesquisadores do instituto canadense que veio ao Brasil, organizou eventos como o “Programa em Integrabilidade, Holografia e Conformal Bootstrap” e o “Minicurso em Teoria de Campos Quântica Avançada”.

“O intuito da parceria foi estimular a colaboração com pesquisadores internacionais”, diz Nathan Berkovits, diretor do ICTP-SAIFR. “Entre os principais objetivos, estava o estudo da Teoria de Campos”.

Nos últimos anos, com o avanço de técnicas para a resolução de problemas matemáticos, como a holografia e a integrabilidade, a Teoria de Campos voltou a ser um grande alvo de estudos da Física. Ao longo de seu curso, Vieira falou sobre as fronteiras entre o que já se sabe sobre a teoria e o que ainda está sendo investigado atualmente, também com o intuito de estimular os alunos a começarem novos projetos.

Teoria de Campos

A teoria que foi o foco dos estudos de Vieira analisa como campos, como o eletromagnético ou o gravitacional, interagem com a matéria. O termo foi cunhado pela primeira vez no século XIX, por Michael Faraday, porém utilizado mais amplamente depois das contribuições de James Clerck Maxwell, algumas décadas depois.

No início do século XX, com o desenvolvimento da mecânica quântica, a teoria começou a ser usada também para o estudo de campos quânticos. De acordo com ela, o fóton não é pensado como uma partícula, mas sim como uma excitação do campo eletromagnético. Essa excitação gera uma ondulação no campo, que se propaga como uma partícula comum. O mesmo vale para outras partículas, como o elétron, que é considerado uma excitação de um campo chamado de Dirac.

campos

“Ainda temos muito para descobrir sobre essa teoria”, afirma Vieira. “Através dela podemos unir, da maneira mais matematicamente bem desenvolvida, elementos da Mecânica Quântica com elementos da Relatividade Geral”.

Uma das aplicações da teoria é na área de física de partículas. Em aceleradores, por exemplo, ela pode ser usada para entender o que acontece quando duas partículas colidem. O estudo de materiais e do comportamento da matéria durante a transição de fases – como do líquido para o gasoso –  também podem utilizar a Teoria de Campos.

O período de parceria entre o ICTP-SAIFR e o Perimeter Institute pode ter acabado, mas a colaboração, que já rendeu um artigo para Vieira, deve prosseguir mesmo sem a presença física dos pesquisadores no Brasil. “Temos vários projetos conjuntos e continuaremos trabalhando neles no futuro”, afirma ele.

*Texto publicado no Jornal da Unesp, número 307, Janeiro/Fevereiro de 2015

Estudando a relação entre doenças e mudanças climáticas

Written by Ricardo Aguiar on January 27th, 2015. Posted in Blog do ICTP-SAIFR

Curso promovido pelo ICTP-SAIFR abordou a influência do clima sobre a dinâmica de patógenos

escola

Se estudar parasitas, vírus, bactérias e sua relação com os organismos que atacam já não é tarefa simples, adicionar o clima à equação a torna ainda mais complicada; e interessante. A “Escola em Dinâmica de Patógenos, Mudanças Climáticas e Globais” tentou levar a alunos de pós-graduação técnicas de como modelar, matematicamente, a influência do clima sobre agentes causadores de doenças. A Escola, que já era realizada habitualmente no ICTP-Trieste, foi realizada esse ano pela primeira vez na América do Sul entre os dias 12 e 23 de janeiro.

Assim como a Escola em Biologia Matemática, realizada no início do mês, o curso contou com aulas teórica e práticas. Os alunos desenvolveram projetos em grupos e apresentaram seus resultados ao final. Além disso, tiveram a oportunidade de conhecer e interagir com pesquisadores internacionais de destaque em suas áreas, como os organizadores do evento Andrew Dobson, da Universidade de Princeton, Graciela Canziani, da Universidad Nacional del Centro (Argentina), Mercedes Pascual, da Universidade de Chicago e Giulio de Leo, da Universidade de Stanford.

Parasitas

“Nós sabemos muito sobre parasitas, mas raramente pensamos neles como grandes componentes da biodiversidade”, afirma Dobson.

Dobson é biólogo e um de seus principais interesses são parasitas. Segundo ele, esses animais que vivem às custas de seus hospedeiros são muito mais comuns na natureza do que imaginamos. Mais comuns, até mesmo, do que animais de vida livre. Por exemplo: há estudos que sugerem que há cerca de 75 mil espécies de parasitas helmintos de vertebrados (vermes, como a tênia), enquanto o número de vertebrados hospedeiros seria em torno de 45 mil. Em outras estimativas, o número de parasitas poderia ultrapassar 300 mil.

Esquecer dos parasitas pode distorcer muito nossa percepção da natureza. Quando pensamos em uma cadeia alimentar, por exemplo, visualizamos uma pirâmide: na base, os produtores; logo acima, em menor número, os herbívoros; e no topo, em número ainda menor, os predadores. Mas, quando levamos os parasitas em consideração, as relações são drasticamente afetadas.

web

Representação tridimensional de uma cadeia alimentar. Cada esfera representa uma espécie: as amarelas são parasitas e as vermelhas são de vida livre.

“O padrão que conhecemos é quase que totalmente invertido”, diz Dobson. “Com a inclusão de parasitas, os predadores de altos níveis tróficos passam a ser vistos como ‘alimento’ para uma grande diversidade de parasitas”. Geralmente, quanto maior o nível trófico de uma espécie, maior a sua quantidade de parasitas, pois maiores são as chances de consumir um animal parasitado.

A seleção natural também fez com que muitos parasitas pudessem continuar seu ciclo de vida dentro do organismo hospedeiro. Em alguns casos, eles conseguem até modificar o comportamento de uma presa para que ela fique mais acessível a um predador, aumentando a eficiência da transmissão. Um parasita que consome parte dos nutrientes de seu hospedeiro, por exemplo, faz com que ele fique com mais fome e busque comida com maior frequência, aumentando sua exposição a predadores.

Os modelos matemáticos que estudam o ciclo de vida de patógenos e seus métodos de transmissão podem nos ajudar a compreender melhor as doenças, tentar prever e evitar surtos e epidemias causados por esses parasitas – animais muitas vezes esquecidos, mas que sorrateiramente tem um impacto na natureza muito maior do que imaginamos.

Efeitos do clima

O trabalho de Graciela Canziani é um exemplo da aplicação prática de tais modelos. A pesquisadora estuda o parasita bovino Ostertagia ostertagi.

“Parasitismos gastrointestinais são doenças que têm um grande impacto econômico na produção de carne bovina na Argentina”, diz ela. “Apenas na região dos Pampas Argentinos, é estimado que cerca de US$ 22 milhões são gastos anualmente devido à morte de bezerros, e US$ 170 milhões são gastos em tratamentos clínicos”.

Ciclo

Canziani desenvolveu um modelo para observar como mudanças climáticas afetam o parasita. Seu objetivo era descobrir qual a melhor época para se aplicar o medicamento que combate o patógeno, para reduzir custos e aumentar a eficiência dos tratamentos. Fatores como a temperatura, as taxas de precipitação e a estação do ano poderiam prejudicar ou favorecer o desenvolvimento do parasita, que tem um estágio de vida livre.

O que a pesquisadora descobriu foi que as taxas de infecção dos bois variavam de acordo com a latitude e com a época do ano. O clima, portanto, deveria ser um fator determinante. O estudo está agora sendo testado na prática.

“Estamos fazendo testes há um ano e ainda temos mais um ano pela frente”, diz a pesquisadora. “Nossos resultados preliminares, entretanto, são muito animadores. Os medicamentos, quando aplicados na época de maior probabilidade de infecção pelo parasita, têm se mostrado bem mais eficientes”.

Rafael Porto, novo pesquisador do ICTP-SAIFR, fala sobre suas linhas de pesquisa

Written by Ricardo Aguiar on January 21st, 2015. Posted in Blog do ICTP-SAIFR

Com bolsas da Simons Foundation e da Fapesp, Porto terá uma posição similar à chamada de Tenure Track nos Estados Unidos e estudará Cosmologia e Física de Partículas 

porto

Conversei essa semana com Rafael Porto, o mais recente pesquisador do ICTP-SAIFR.  Porto chegou ao Brasil há menos de uma semana e já começou a trabalhar. Antes disso fazia pós-doutorado no Instituto de Estudos Avançados de Princeton, nos Estados Unidos, mas foi atraído pela oportunidade de fazer parte do ICTP-SAIFR. Além disso, como é uruguaio, foi uma chance de voltar para mais perto de casa.

“A ideia do ICTP é promover a pesquisa em ciência básica em países menos desenvolvidos”, diz ele. “Então, além de estar em um ótimo ambiente para se fazer pesquisa e promover a ciência na América do Sul, também posso estar mais perto da família”.

Tenure-track

A posição que Porto irá ocupar, na verdade, ainda não é permanente. É similar à chamada de Tenure Track nos Estados Unidos. Ela é fruto de duas bolsas conquistadas pelo ICTP-SAIFR, em janeiro de 2014, da Simons Foundation – uma instituição norte-americana que promove pesquisa em ciência básica e matemática ao redor do mundo.

O sistema, não muito comum no Brasil, funcionará assim: o pesquisador receberá, ao longo dos próximos dois anos, uma bolsa conjunta da Simons-Fapesp para realizar seus projetos de pesquisa. Durante esse período, estará em constante avaliação e terá a oportunidade de ser efetivado. A vantagem desse método de contratação, para as universidades ou institutos de pesquisas, é a chance que eles têm de conhecer o pesquisador antes de efetivá-lo.

Pesquisa

Um dos principais interesses de Porto está na área de Física de Partículas e Teoria de Campos Efetiva. O pesquisador buscará entender quais foram as condições iniciais do universo que fizeram com que as grandes estruturas cósmicas, como as galáxias, se formaram e se distribuíram da maneira como nós as vemos hoje.

galaxy

Galáxia de Andrômeda. (Crédito: NASA/Swift/Stefan Immler (GSFC) e Erin Grand (UMCP)

Segundo o pesquisador, se o universo estivesse distribuído de maneira uniforme as galáxias não existiriam – não haveria regiões de maior densidade de matéria e outras sem matéria alguma.

“Achamos que durante o período de Inflação, que ocorreu logo após o surgimento do universo e que é caracterizado por uma rápida expansão, houve algum tipo de perturbação que permitiu a formação das estruturas que observamos hoje”, afirma Porto. “Mas quais são os mecanismos que causaram essa perturbação?”

Uma das maneiras de se tentar chegar às respostas é estudando a radiação cósmica de fundo. Essa radiação é proveniente do início do universo, portanto pode oferecer pistas sobre esse tempo. Ela surgiu quando, logo após o surgimento do universo, os fótons deixaram de ser “presos” por elétrons e prótons e passaram a viajar livremente pelo espaço.

CMB

Flutuações na radiação cósmica de fundo, detectadas pelo satélite COBE (Cosmic Background Explorer).

“Meu trabalho, então, será aplicar ideias originalmente desenvolvidas em Física de Partículas, de pequenas escalas, para estudar e entender a dinâmica de grandes escalas, como a de galáxias e do universo”.

Somando matemática à biologia para estudar a natureza

Written by Ricardo Aguiar on January 14th, 2015. Posted in Blog do ICTP-SAIFR

Entre os dias 5 e 11 de janeiro, ICTP-SAIFR realizou a quarta edição da Escola em Biologia Matemática

IMG_1830

Os professores Roberto Kraenkel (esquerda) e Paulo Inácio Prado (direita).

A Escola em Biologia Matemática promovida anualmente pelo ICTP-SAIFR já se tornou uma referência em toda a América Latina. Idealizada e organizada por Roberto Kraenkel, físico do IFT/Unesp, ela chegou à sua quarta edição internacional na última semana. O curso busca unir alunos de graduação e pós-graduação, brasileiros e estrangeiros, das áreas de biologia, matemática e física. Com aulas teóricas e projetos práticos, estimula a pesquisa e a formação de novos profissionais em um campo que está em pleno crescimento.

“Nos últimos anos, a Biologia Matemática aumentou muito no Brasil”, afirma Kraenkel. “Podemos observar isso pelo número de revistas especializadas e pelo número de cientistas importantes que estão trabalhando nessa área”.

O curso

Um dos motivos para essa expansão é o fato da Biologia precisar, cada vez mais, da matemática para entender a natureza. Ecologia, evolução e epidemiologia, temas que são o foco do curso,  usam modelos matemáticos com uma frequência cada vez maior.

Por exemplo: o que acontece quando duas espécies competem entre si por um recurso?

Um exemplo clássico de aplicação da Biologia Matemática foi o estudo da introdução da formiga Argentina (Linepithema humile) na Califórnia. A nova espécie passou a competir com a espécie local (Pogonomyrmex californicus) e, eventualmente, a levou à extinção.

ants

A dinâmica de populações de uma mesma espécie e a relação entre presas e predadores também são temas abordados ao longo do curso. Além disso, os alunos aprendem sobre epidemiologia. Kraenkel comentou sobre um de seus trabalhos na área.

“Em um estudo realizado na Mata Atlântica, verificamos que a biodiversidade pode ajudar a controlar a malária, evitando, até mesmo, uma epidemia da doença naquela região”, diz ele.

Pesquisa e formação

Além de aulas teóricas, os alunos aprendem sobre Biologia Matemática na prática. Em grupos, e com a ajuda de monitores, eles desenvolvem projetos e o apresentam ao final do curso. Em edições anteriores, um dos trabalhos apresentados chamou a atenção de um professor estrangeiro convidado e foi publicado na revista científica “Ecological Complexity”.

“É uma história interessante”, conta Paulo Inácio Prado, biólogo da universidade de São Paulo e um dos organizadores da Escola. “Convidamos o professor Frithjof Lutscher, da Universidade de Ottawa, para participar da Escola. No dia da apresentação dos projetos, ele gostou muito do trabalho e disse que poderia ser publicado. Depois do final do curso, continuou ajudando os alunos e o projeto se tornou um artigo”.

alunos

Alunos da Escola discutem sobre o projeto em grupo.

Para ver outros projetos desenvolvidos na Escola, clique aqui.

Além do incentivo ao desenvolvimento de pesquisa na área, o curso também estimula a formação de novos profissionais. “Convidamos alunos de cursos anteriores para serem monitores dos próximos”, diz Prado. “Assim, encorajamos também a permanência deles na área e a formação de novos pesquisadores em Biologia Matemática”.

Biólogos nas ciências exatas

O caráter interdisciplinar do curso – cerca de metade dos alunos são biólogos e cerca de metade físicos ou matemáticos – levanta a questão: os biólogos tem dificuldade para entender toda a matemática usada durante o curso?

“Durante um curso de graduação em Biologia, a formação na área de matemática deixa muito a desejar”, afirma Prado. “Os alunos que selecionamos para a Escola são sempre muito qualificados, fazem cursos em matemática e sabem, ao menos, fundamentos de Cálculo e Álgebra Linear. Porém, o déficit de matemática nas graduações em Biologia nos faz pensar que, nos próximos anos, talvez seja necessária uma mudança no currículo desses cursos”.

ICTP-SAIFR realiza curso em Cosmologia Observacional

Written by Ricardo Aguiar on December 26th, 2014. Posted in Blog do ICTP-SAIFR

 

cosm_obs

A cosmologia, estudo do universo, entrou nos últimos anos em uma nova era marcada por um grande número de experimentos. Estudos de grande escala relacionados à Energia Escura e à medida da radiação cósmica de fundo exploram e revelam cada vez mais informações sobre o universo. Para fornecer a alunos de pós-graduação de física uma melhor compreensão sobre essa área, o ICTP-SAIFR realizou um curso sobre Cosmologia Observacional. O evento teve duração de duas semanas – entre os dias 1 e 12 de dezembro – e foi o primeiro organizado em parceria com o ICTP-Trieste. Para entender mais sobre o curso e seus temas, conversei com Paolo Creminelli, pesquisador da sede italiana do ICTP.

“Fazemos esse curso regularmente no ICTP-Trieste”, disse ele. “Agora, pela primeira vez, o realizamos no Brasil também, para que um maior número de estudantes da América do Sul tivesse a oportunidade de participar”.

A ideia era a de que, ao longo do curso, os alunos aprendessem tanto aspectos teóricos, como a teoria da Inflação, quanto práticos, como análise de dados. Além disso, o evento teve diversas sessões de discussão. Durante elas, os estudantes tinham a oportunidade de conhecer e de interagir com pesquisadores de destaque internacional.

Do início ao presente

As aulas abordaram desde temas relativos ao início do universo até o universo atual. Os destaques do blog vão para as palestras de Creminelli e de Marcello Musso, professor da Universidade de Louvain.

inflation

Na figura, podemos ver um esquema da história do universo. Perto do seu início, vemos o período de Inflação. Muito tempo depois, é destacado também a formação das primeiras galáxias (Crédito: NASA/WMAP Science Team).

Creminelli falou sobre Inflação. Esse período é caracterizado por uma rápida expansão do universo e ocorreu logo após seu surgimento. Outro tema bastante interessante, e motivo de discussões atualmente, foi relacionado às ondas gravitacionais que poderiam ter sido produzidas por essa expansão. A razão para os debates é que, no primeiro semestre desse ano, o experimento do BICEP2 alegou ter medido, indiretamente, essas ondas. Entretanto, o telescópio Planck sugeriu recentemente que as medidas do BICEP2 podem não estar corretas. Durante minha conversa com Creminelli, perguntei a ele qual era sua opinião a respeito do assunto.

“As medidas do Planck mostraram que houve muito mais contaminação do que esperávamos nas medidas do BICEP2”, afirmou o pesquisador. “A contaminação provavelmente se deve à poeira espacial. Assim, não sabemos o que poderiam ser ondas gravitacionais e o que é poeira”.

Já as aulas de Marcello Musso discutiram o universo atualmente. Hoje, quando olhamos para o espaço, vemos galáxias, conglomerados de galáxias, e também vemos áreas completamente vazias. Mas por que o universo tem essa conformação, com regiões densas e outras sem matéria? E como ele chegou a essa conformação? Essas foram algumas das questões que Musso discutiu em suas aulas, e para as quais ainda não temos uma resposta definitiva.

Caso queria saber mais, acesse a página oficial do curso clicando aqui. Lá você encontrará, por exemplo, os vídeos de todas as aulas e material disponibilizado pelos professores.

Ciência exata contra doenças

Written by Ricardo Aguiar on December 17th, 2014. Posted in Blog do ICTP-SAIFR

Dois mini-cursos mostrarão como matemática e física podem ajudar no controle de males

Quando falamos em doenças, logo pensamos em vírus, bactérias, e no que a medicina pode fazer para conter os patógenos. Raramente pensamos, entretanto, em como a física e a matemática podem ajudar. Em janeiro, o ICTP-SAIFR realizará dois minicursos para tratar desses e de outros assuntos. A “Escola de Dinâmica de Patógenos, Mudanças Climáticas e Globais” e a “IV Escola de Biologia Matemática” abordarão modelos matemáticos de ecologia, epidemiologia e como a interferência humana e do clima se relacionam com as doenças.

Parasitismo

“Perguntaremos aos alunos quais problemas lhes interessam mais e os dividiremos em grupos para trabalharem nesses problemas”, diz Graciela Canziani, da Universidade Nacional Del Centro, da Argentina, uma das organizadoras do minicurso com enfoque em patógenos. “Essa experiência prática fará com que entendam o processo de modelagem matemática, desde a análise de dados até a discussão de resultados”.

Esse curso terá outros convidados internacionais, como Andy Dobson (Universidade de Princeton), Giulio De Leo (Universidade de Stanford) e Mercedes Pascual (Universidade de Michigan).

Ostertagia-ostertagi

O parasita Ostertagia ostertagi

Compreender como o ecossistema e o clima influenciam o ciclo de vida de um patógeno pode levar a melhorias no tratamento de doenças. Canziani, por exemplo, discutirá o parasita bovino Ostertagia ostertagi, responsável por grandes perdas na produção de carne. “Com modelos matemáticos, tentamos reduzir a frequência de aplicação de drogas e torná-las mais eficientes”, afirma.

Biologia Matemática

Já o minicurso sobre Biologia Matemática abordará temas ligados tanto à ecologia quanto à epidemiologia. O curso será introdutório e interdisciplinar: cerca de metade dos alunos serão biólogos enquanto a outra metade, físicos ou matemáticos.

“O que determina uma epidemia?”, questiona Roberto Kraenkel, um dos organizadores do minicurso. “Analisamos taxa de infectividade do patógeno, probabilidade de transmissão, duração da doença, entre outros fatores, para tentar chegar a uma conclusão”.

Anopheles albimanus

Kraenkel estuda, por exemplo, a dinâmica de populações dos mosquitos transmissores da malária, o Anopheles sp. (foto), e sua interação com humanos

Trabalhos nessa área podem ajudar na elaboração de estratégias contra doenças e epidemias, analisando, por exemplo, as melhores formas de combate e a melhor época para aplicá-las.

*Texto publicado no Jornal da Unesp, número 306, Dezembro/2014.

 

Física Quântica e Cosmologia são temas de Workshop promovido pelo ICTP-SAIFR

Written by Ricardo Aguiar on December 17th, 2014. Posted in Blog do ICTP-SAIFR

Evento debateu, especulou e tentou explorar ideias e o potencial de colaboração entre as duas áreas  

quantum cosmology

Entender como o universo funciona não é tarefa simples. Físicos de diversas áreas buscam compreender os mecanismos que levaram o universo a ser o que ele é hoje e as leis que o governam. Entre os dias 3 e 7 de novembro, acompanhei um Workshop que o ICTP-SAIFR realizou para debater ideias de Física Quântica e de Cosmologia. Um dos principais objetivos do evento foi reunir pesquisadores e explorar o potencial colaborativo dessas áreas, que não tiveram grande interação no passado.

A presença e as palestras do renomado cientista George Ellis foram um dos destaques do evento. O pesquisador falou sobre mecânica quântica, a hipótese da unitariedade, determinismo e cosmologia.

Unitariedade

Antes de mais nada, vamos falar sobre a hipótese da unitariedade. Ela nos diz que quando conhecemos o estado de um sistema é possível prever tanto o estado futuro quanto o estado passado desse mesmo sistema.  Essa hipótese é verdadeira para sistemas quânticos nos quais não há intervenções externas. Quando há intervenções ocorrem mudanças aleatórias no sistema, o que impede previsões.

Agora, vamos aplicar essa ideia à Cosmologia – vamos pensar no universo como um sistema. Caso a hipótese da unitariedade estivesse correta, o estado futuro do universo seria previsível desde seu surgimento – a não ser que houvesse algum tipo de influência externa.

Como sabemos, porém, o universo não é regido apenas pelas leis da Mecânica Quântica. Grande parte de sua dinâmica obedece às leis da Mecânica Clássica – exemplo disso são as órbitas de planetas e estrelas sob a ação da gravidade. A Mecânica Quântica consegue descrever o universo logo após seu surgimento, antes do período de Inflação – quando expandiu rapidamente. Após a Inflação, a Mecânica Quântica já não era mais suficiente para descrever todos os fenômenos do universo. Em suas palestras, Ellis disse que uma das grandes questões ainda não respondidas pela Física é o que aconteceu durante esse período que fez com que a Mecânica Quântica deixasse de explicar todo o universo.

Fronteiras da Mecânica Quântica

Ellis também explorou temas relativos às escalas para as quais a Mecânica Quântica seria válida. A teoria consegue explicar sistemas microscópicos, mas não sistemas de escalas maiores. Além disso, funciona para sistemas lineares, ou seja, para quando as consequências são proporcionais às ações aplicadas. Nosso universo é não-linear, pois pequenas ações podem ter grandes consequências e vice-versa.

Ellis argumentou, no entanto, que a Mecânica Quântica pode ser aplicada a sistemas de quaisquer escalas. Para isso, seria preciso dividir nossa realidade não-linear em sub-sistemas lineares. Algumas das questões discutidas, então, foram até onde a Mecânica Quântica é válida, onde estaria o limite entre sistemas micro e macro e como a teoria poderia ser válida para escalas maiores.

As respostas para muitas das questões debatidas permanecem desconhecidas. A Física ainda busca explicar porque aparentemente temos um mundo quântico e um mundo clássico que ao mesmo tempo coexistem, mas não conseguem ser explicados por uma única teoria. Debates e discussões como as promovidas neste evento pelo ICTP-SAIFR estimulam a formação de novas ideias para tentar desvendar os mistérios que permeiam o universo.

box

Onuchic Minicourse on Energy Landscapes in Biophysics

Written by Nathan on November 23rd, 2014. Posted in

logo

On Sunday March 8, Prof. Jose Nelson Onuchic (Rice Univ.) will present a minicourse of two lectures on energy landscapes in biophysics. This minicourse will precede the Minischool on Biophysics of Protein Interactions from March 9-13.

Program for Sunday March 8 (IFT-UNESP auditorium):

13:00 Registration (for participants of the Minischool on Biophysics of Protein Interactions, only)

14:00 Lecture 1: The physics of protein folding: energy landscapes and funnels

15:45 Coffee break

16:15 Lecture 2: The energy landscape of bimolecular machines

Description:
It is amazing how cells have created a number of molecular machines specialized for undertaking tasks needed to control and maintain cellular functions with exquisite precision. Due to fact that biomolecules fluctuate via thermal motion and their dynamics is diffusive, biological machines are fundamentally different from those experienced by conventional heat engines or machines in the macroscopic world. One of the key features of biological machines is the conformational changes triggered by the thermal noise under weak environmental perturbation. Therefore we can explain how they behave using ideas borrowed from the energy landscape theory of protein folding and polymer dynamics. This “new view” allows us to envisage the dynamics of molecular motors from the structural perspective and it provides the means to make several quantitative predictions that can be tested by experiments. For the kinesin motor, a prototype of the biological machines in the cell, molecular simulations of an explicit kinesin and microtubule structures show that fluctuations and flexibility inherent to the structure leads to versatile adaptation of the molecular structure, allosteric communication controlled by internal mechanics, and large amplitude stepping motion harnessing the thermal fluctuation. This activity will precede the Minischool on Biophysics of Protein Interactions from March 9-13

There will be no application form for this activity and everyone is welcome to participate. For more information, send email to secretary@ictp-saifr.org. This activity is part of the “Minischool on Biophysics of Protein Interactions” and those who applied for the school are expected to participate in the minicourse.

Announcement

Onuchic

Videos:

Photos: