Posts Tagged ‘mudança climatica’

Pesquisa sobre competição subterrânea entre plantas na revista Science

Written by Artur Alegre on January 14th, 2021. Posted in Blog do ICTP-SAIFR

Abaixo da superfície, plantas travam uma constante disputa pelo espaço e recursos presentes no solo. Embora ocorra escondida do olhar humano, o entendimento da complexa dinâmica de raízes no subsolo pode trazer consequências muito significativas para a sociedade, abrangendo desde a criação de plantios mais sustentáveis e eficientes, até o estabelecimento de estratégias de mitigação de efeitos climáticos. No estudo The exploitative segregation of plant roots, publicado em 4 de dezembro na revista Science, é apresentado um modelo matemático capaz de mapear as interações entre raízes de plantas que acontecem embaixo da terra, dando uma nova luz ao entendimento de um mecanismo ecológico fundamental. O trabalho foi desenvolvido por um grupo de pesquisadores de instituições do Brasil, Espanha e Estados Unidos, e contou com a participação de Ricardo Martínez-García, professor SIMONS-FAPESP no Instituto Sul-Americano para Pesquisa Fundamental (ICTP-SAIFR) e no Instituto de Física Teórica da UNESP (IFT-UNESP), como um dos principais autores da pesquisa.

Raízes tingidas de plantas de pimenta. O tingimento é empregado como método de diferenciação entre raízes de plantas vizinhas para facilitar o estudo de sua interação. Imagem cedida por Ciro Cabal.

Em entrevista concedida por videoconferência ao ICTP-SAIFR, o professor Martínez-García fala sobre algumas das motivações do trabalho: “Muito da dinâmica dos ecossistemas na verdade acontece abaixo da terra. Se nós pretendemos entender como os ecossistemas funcionam, e como, por exemplo, respondem a mudanças globais, nós precisamos compreender o que acontece no subsolo. Não basta apenas entender a parte que conseguimos observar.” Martínez-García dedica sua pesquisa à área da Física aplicada à Biologia, em especial ao desenvolvimento de modelos físico-matemáticos para estudar sistemas ecológicos complexos, e foi um dos responsáveis pelo desenvolvimento teórico neste estudo.

O modelo apresentado neste trabalho simula o balanço entre a quantidade de energia gasta por uma planta para produzir uma certa quantidade de raiz em uma dada direção, em relação ao ganho de recursos – nesse caso, absorção de água – que a planta terá ao produzi-la. O professor exemplifica: “Em cada ponto do espaço, uma planta somente vai colocar raízes se o recurso nesse ponto é suficientemente alto para devolver um benefício para ela. (…) Para uma planta absorver recursos a 2 m do seu caule, é mais custoso do que a 10 cm, pois como ela não pode se deslocar, precisa fazer uma raiz mais longa. Construir todo esse mecanismo mais longo é energeticamente mais custoso para ela. Então esse é o balanço.” A presença de uma segunda planta na vizinhança muda a dinâmica dessa balanço, pois nesse cenário os dois organismos passam a competir pela água disponível no solo ao redor. Dessa maneira a distribuição de raízes no solo ganha um grau de complexidade maior. “Imagine que você tem uma certa quantidade de água em um ponto do espaço. Esse ponto fica a 2 m de uma planta e a 0,5 m de outra. Mesmo que as duas dividissem essa quantia de água de maneira idêntica, para uma planta o custo seria menor do que para a outra. O benefício da planta que está mais perto é maior, por isso as plantas se espalham menos quando têm vizinhas.

Embora essa relação seja simples o bastante de compreender, o caminho para se chegar a um modelo matemático capaz de simular precisamente a proporção em que esse balanço ocorre exige uma base matemática muito forte. De fato, uma das coisas mais interessantes sobre o modelo, explica o professor, é o fato de ele ter sido inspirado por uma aparente contradição existente em modelos predecessores. “Dentre os grupos de pesquisa que já buscaram entender esse processo, de como plantas mudam seu sistema de raízes na presença de outras plantas, tinha duas maneiras de responder essa pergunta: havia grupos de pesquisadores que não consideravam a distribuição no espaço, medindo apenas a massa total de raiz produzida. Desses estudos concluiu-se que se uma planta tem uma vizinha próxima, ela irá gerar mais raiz: a resposta de uma planta a uma competição por recursos seria ter mais raízes, para tentar absorver mais, e mais rápido.”

“Outro grupo apenas mediu quanto espaço a planta cobre com suas raízes. No lugar de se perguntar quanta massa de raiz as plantas geram, perguntou-se de que maneira o território do qual a planta absorve água muda na presença de uma vizinha. A conclusão foi que neste caso as plantas ocupam um território menor, espalhando-se menos. Aí ficou uma contradição, pois se há um espalhamento menor, como você produz mais raiz?”, aponta o professor. Uma maior densidade de raízes, explica, poderia responder essa aparente contradição, mas os modelos até então não possuíam informação suficiente para afirmar que este seria o caso. “Então o que nós fizemos foi um modelo geral que introduz o espalhamento das plantas junto com a quantidade de raiz em cada local do espaço. Leva em consideração as duas coisas. E com a técnica experimental que usamos, conseguimos fazer uma reconstrução espacial completa. (…) A conclusão geral na qual chegamos foi justamente que: sim, as plantas se espalham menos na presença de uma vizinha, sendo mais locais na procura de recursos, mas nas suas proximidades elas se tornam mais agressivas, isto é, produzem mais raízes perto do próprio caule.” 

Ricardo Martínez-García é professor SIMONS-FAPESP no ICTP-SAIFR e no IFT-UNESP. Sua pesquisa busca empregar técnicas computacionais e de Física Estatística para examinar a formação de padrões de organização em sistemas biológicos complexos, e abrange desde estudos com micróbios até plantas e paisagens inteiras. Imagem cedida por Ricardo Martínez-García.

As predições do modelo foram testadas em um experimento conduzido no Instituto de Ciências Agrárias de Madri, na Espanha. O teste foi feito em uma variedade de espécies de plantas de pimenta, cultivadas em estufa por 11 meses sob condições muito controladas para esse experimento. “É comum na Biologia você fazer um experimento com uma espécie modelo. (…) Nós usamos a planta de pimenta pois o Ciro Cabal, que é o autor principal do artigo, já conhecia o organismo para cultivá-lo de uma maneira mais controlada. Uma vez que você descobre um mecanismo num organismo modelo, aí vem a questão de como generalizar para outras espécies, do quão geral o modelo é etc.” É a mesma lógica, comenta o professor, do uso de ratos de laboratório em estudos sobre doenças humanas. Após o crescimento das plantas, caules e folhas foram cortados e colhidos. As raízes, ainda no solo, foram tingidas com pigmentos de cores diferentes, a fim de permitir o reconhecimento de cada planta em meio ao emaranhado de raízes. “Depois de colorir as plantas, fizemos diversas pequenas divisões no solo, e então pudemos ver o quanto cada planta possuía de raiz em cada divisão. Com isso, conseguimos construir um mapa espacial das raízes de cada planta.”

“Quando o Ciro Cabal escreveu para mim com os resultados dos experimentos realizados, e a figura do experimento era a mesma que uma das figuras do nosso modelo, para mim essa foi a maior satisfação. Não apenas de um ponto de vista pessoal, mas por se tratar de um mecanismo fundamental da Ecologia que ainda não era conhecido.”, relata o professor. Para além da contribuição para a ciência de base, a existência de um modelo matemático como esse, capaz de descrever a competição entre plantas que se passa no subsolo, pode trazer implicações muito expressivas para a maneira como é feita agricultura, permitindo a criação de um sistema de plantio otimizado e o aumento da produção de alimentos. “Se eu colocar 15 cm entre as minhas plantas, elas irão investir menos em produção de raízes e mais em produção de frutas, por exemplo. Isso pode aumentar muito a eficiência de cultivos com um investimento de água menor.”, conjectura o professor. Além disso, as raízes constituem uma grande reserva de carbono, que armazena aproximadamente um terço de toda a biomassa de plantas do planeta. Por isso, uma melhor compreensão do seu comportamento permitirá o desenvolvimento de melhores modelos de grande escala, com os quais cenários de mudanças climáticas  podem ser simulados.

Desse ponto em diante, o trabalho de Martínez-García e seus colaboradores deve seguir rumo ao aprofundamento do modelo: estudar as interações envolvendo sistemas com mais de duas plantas, espécies diferentes e em condições climáticas distintas esses são alguns dos próximos passos na lista dos pesquisadores. “O que fizemos foi uma primeira contribuição, dar uma ideia dos mecanismos que dominam esses padrões espaciais de raízes. Evidentemente há muito mais trabalho para fazer, mas encaixar a primeira peça é uma grande satisfação.”, conclui o professor. 

——————————————————————————————————————————-

O artigo The exploitative segregation of plant roots, publicado em 4 de dezembro de 2020 na revista Science, é de autoria de Ciro Cabal (Universidade de Princeton, Estados Unidos), Ricardo Martínez-García (ICTP-SAIFR/IFT-UNESP, Brasil), Aurora de Castro (Museu Nacional de Ciências Naturais, Espanha), Fernando Valladares (Museu Nacional de Ciências Naturais/Universidade Rei Juan Carlos, Espanha) e Stephen W. Pacala (Universidade de Princeton, Estados Unidos).

Bate-papo sobre um dos temas mais polêmicos da atualidade: o Aquecimento Global

Written by Adrianna Virmond on November 13th, 2019. Posted in Blog do ICTP-SAIFR

No dia 03 de outubro aconteceu mais uma edição do Papos de Física, evento mensal de divulgação científica promovido pelo ICTP-SAIFR, centro de pesquisa associado ao IFT-UNESP. Nesta edição o público pôde conversar com a profa. Dra. Ilana Wainer, professora do Instituto Oceanográfico da USP (IO-USP), que discutiu os Efeitos Climáticos do Oceano.

A professora Ilana Wainer (IO-USP) explicou sobre as mudanças climáticas e quais evidências científicas comprovam sua existência.

 

Algumas semanas antes da realização do Papos de Física, o IPCC (Painel Intergovernamental para Mudanças Climáticas) divulgou o mais recente Relatório Especial sobre o Oceano e a Criosfera (regiões da superfície terrestre cobertas permanentemente por gelo e neve). Aproveitando os dados divulgados neste relatório, a professora apresentou as principais evidências que comprovam o aquecimento global e quais as perspectivas (otimistas ou não) sobre o futuro do planeta.

 

Antes de mais nada, a professora esclareceu a diferença entre tempo e clima. Tempo compreende as condições e mudanças meteorológicas que estão ocorrendo no agora. Clima, por outro lado, compreende padrões médios de variação das condições atmosféricas ao longo de um período prolongado de tempo. Assim, falar que está fazendo sol é falar sobre o tempo, mas falar que normalmente em janeiro faz calor e chove, é falar sobre clima. Quando falam de aquecimento global e mudanças climáticas, os cientistas olham para esses padrões de variação ao longo do tempo, em escalas globais.

 

Mas antes de entrar no polêmico aquecimento global, vamos entender um pouco sobre a influência dos oceanos no clima.

 

O planeta Terra, como um todo, é um sistema complexo onde diversos agentes se relacionam. Isso se aplica também ao clima, que é influenciado e atua sobre a biosfera (que comporta os ecossistemas do planeta), a litosfera (rochas e estrutura interna terrestre), a hidrosfera (água em seus diferentes ambientes) e, obviamente, a atmosfera (camada de gases que envolve o planeta). As interações entre essas diferentes “esferas” ocorrem em escalas espaciais e temporais distintas, mas todas exercem algum impacto no controle do clima global. No Papos de Física de outubro, Ilana focou nas interações entre atmosfera e hidrosfera (em especial, os oceanos) e seu efeito sobre o clima.

 

Ilana explicou que os oceanos são como o ar condicionado da Terra e têm um papel fundamental na redistribuição de calor no planeta. A água retém mais calor que a atmosfera e, por conta das correntes oceânicas, o calor é distribuído. As correntes são divididas entre correntes superficiais, mais quentes, e correntes de fundo oceânico, mais frias. Elas são influenciadas por diversos fatores, incluindo ventos, marés, densidade da água e o movimento de rotação da Terra. Até a topografia do fundo oceânico e das costas influencia na velocidade das correntes.

 

Mesmo que as marés exerçam influência nas regiões próximas às costas, a principal força motriz das correntes superficiais é a atmosfera.

 

A ação dos ventos movimenta mais ou menos 10% do volume do oceano, atuando diretamente nas camadas mais superiores de água. Estas, por sua vez, influenciam a movimentação das camadas logo abaixo, e assim por diante. Dessa forma, os ventos podem influenciar o movimento de água até a profundidade de 400m.

 

Mas os oceanos são muito mais profundos do que 400m. Se os ventos só conseguem influenciar até essa profundidade, deve haver outro mecanismo responsável pela movimentação das correntes profundas, certo? Exato. As correntes profundas são controladas, principalmente, pela densidade da água do mar.

 

Ao se movimentar em direção aos pólos, a temperatura da água diminui. Nessas regiões, a salinidade é maior, ou seja, a concentração de sal dissolvido aumenta – isso ocorre porque parte da água é aprisionada em cristais de gelo, deixando as moléculas de sal para trás, concentradas na água líquida. A água mais fria e “salgada” é mais densa que a água que chega nessas regiões e afunda, criando correntes de movimentação vertical chamada circulação termoalina. A movimentação de águas profundas em direção à superfície também carrega nutrientes que sustentam a base das cadeias alimentares marinhas.

 

Correntes superficiais quentes (vermelho) e correntes profundas, frias (azul). Essas grandes correntes de circulação de água funcionam como um “ar condicionado” do planeta. (Imagem: NASA).

 

A ação conjunta das correntes oceânicas superficiais e profundas mantém o equilíbrio do clima no planeta todo. Ou pelo menos costumava manter… Apesar da complexidade do sistema controlando o clima, o equilíbrio é, na verdade, frágil, e “pequenas” perturbações podem ter consequências grandes.

 

Como sabemos que o planeta está aquecendo?

 

No IPCC centenas de cientistas de todo o mundo recolhem dados sobre o clima global para avaliar os impactos do aquecimento global. Comprova-se que o planeta está, de fato, aquecendo a partir de diversos indicadores. Vamos conhecer alguns deles?

Diversos indicadores mostram que a temperatura média do planeta está aumentando e que as mudanças climáticas são reais. Veja o texto para entender um pouco mais sobre cada indicador.

 

Diminuição das geleiras

Talvez o mais conhecido e impactante indicador do aquecimento global é o derretimento das geleiras. Imagens de satélite mostram a cobertura de gelo marinho no Ártico cada vez menor nas últimas décadas.

 

Umidade específica do ar

A umidade específica do ar também tem aumentado no passar dos anos. Isso significa mais vapor d’água no ar. A princípio, ter mais água não parece um problema, mas, na verdade, o vapor d’água é um gás estufa poderosíssimo e contribui para o aumento da temperatura.

 

Calor dos oceanos

Também há registro do aumento do conteúdo de calor nos oceanos. Já existem evidências de que as temperaturas estão aumentando na superfície dos oceanos e até os primeiros 700m de profundidade. Isso afeta diretamente os frágeis ecossistemas marinhos, e também a população que depende dele para se alimentar.

 

Aumento do nível do mar

Diversas localidades já registram aumento do nível do mar no mundo. Isso é causado tanto pelas taxas aceleradas de derretimento das geleiras do Ártico, como também pela expansão térmica dos oceanos (por conta do aumento de temperatura). Estima-se que atualmente o nível do mar sobe 3.6 mm por ano.

 

Temperatura da baixa atmosfera

A atmosfera é dividida em algumas camadas, de acordo com a distância em relação ao solo. Nós habitamos a troposfera, a camada mais baixa, que compreende até 12km de altitude, e fica abaixo da camada de ozônio. Medidas sistemáticas da temperatura dessa camada mostram que ela tem esquentado nos últimos anos. Aliás, comparado à época pré-Revolução Industrial, a temperatura já subiu 1°C! Isso acontece por que os gases de efeito estufa se acumulam na atmosfera e retém o calor irradiado da superfície e elevando a temperatura.

 

 

A atmosfera do planeta é dividida em camadas: troposfera, estratosfera, mesosfera, termosfera e exosfera. Nós habitamos a troposfera, a camada mais baixa, que vai até 12km de altura. Um pouco acima disso, se encontra a conhecida camada de ozônio (Fonte freepik user).

 


Aliás, o que é o Efeito Estufa?

 

Primeiro, precisamos saber que o Efeito Estufa é natural e, na verdade, garante a vida na Terra.

 

Na agricultura, as estufas são utilizadas para cultivar plantas mais sensíveis, e que não sobreviveriam ao clima no exterior. Dentro de uma estufa, a radiação solar passa pelas paredes de vidro e é absorvida pelas plantas e outras estruturas dentro dela. Parte da radiação é irradiada de volta, mas fica presa conta das paredes de vidro. Dessa forma, é possível cultivar plantas independente das variações climáticas das estações do ano. De forma semelhante, o planeta Terra também está dentro de uma estufa – a nossa atmosfera.

 

Quando a radiação solar chega na Terra, parte dela é refletida de volta para o espaço pelas camadas mais externas da atmosfera. Uma outra pequena parcela é refletida de volta para o espaço nas grandes geleiras, por conta da cor branca dessas superfícies. O restante é absorvido pelos oceanos e massas de terra do planeta. A Terra irradia parte do calor absorvido de volta para o espaço, mas uma porcentagem acaba presa na atmosfera, por conta dos gases do efeito estufa existentes, e isso mantém o planeta aquecido. Se não fosse esse efeito, a Terra poderia ser até 33°C mais fria, o que inviabilizaria a vida por aqui (pelo menos nas formas como a conhecemos hoje). 

 

Os gases do efeito estufa incluem vapor d’água, dióxido de carbono (conhecido como gás carbônico – CO2), metano (CH4), óxido nitroso (N2O), ozônio e os componentes clorofluorcarbonos (CFCs). Com exceção dos CFCs, que são utilizados para refrigeração, todos esses gases são naturais e estão presentes na atmosfera terrestre, em proporções variadas. A grande questão é que o estilo de vida que levamos hoje, com grande dependência de combustíveis fósseis e emissão de gases, potencializa o efeito estufa, contribuindo para o aumento da temperatura do planeta.

 

O efeito estufa ocorre naturalmente no planeta e garante temperaturas amenas. O problema é a intensificação do efeito, por conta da emissão de gases do efeito estufa (Imagem mundoeducacao).

 

E para onde vai esse calor em excesso? Por enquanto, para o oceano (uma das causas do aumento da sua temperatura). Estima-se que os oceanos sejam responsáveis por absorver cerca de 93% do calor em excesso da atmosfera. Por enquanto, eles são capazes de fazer isso, mas Ilana alertou que já estamos nos aproximando de um “ponto de inflexão”, e que talvez os oceanos não sejam capazes de absorver o calor em excesso por muito tempo. As consequências disso podem ser severas, acelerando as mudanças que já estão ocorrendo e aumentando ainda mais a temperatura.

 

Como as mudanças climáticas já estão afetando o planeta?

 

  • O aquecimento do oceano é acompanhado da diminuição do pH e diminuição da quantidade de O2 dissolvido na água. O resultado é morte de parte significativa da vida marinha e alteração do equilíbrio químico dos oceanos;
  • Além disso, o aquecimento do oceano prejudica a mistura entre camadas de profundidades diferentes, gerando a estagnação da água. Isso implica em menos oxigenação das camadas e menor circulação de nutrientes, também impactando a vida marinha;
  • O nível do mar já aumentou em algumas partes do planeta. As mudanças variam de lugar para lugar, mas é importante lembrar que quase 2 bilhões de pessoas moram a menos de 100km da costa, e toda essa população está em perigo com variações drásticas do nível do mar;
  • Chuvas, ciclones tropicais e outros eventos extremos que atingem as costas têm se intensificado;
  • O aumento do nível do mar também é associado com maior incidência de inundações, enchentes, secas, erosão e danos para infra-estrutura de regiões próximas à costa, desaparecimento de ilhas oceânicas e contaminação de aquíferos;
  • Cenários otimistas prevêem o aumento do nível do mar em 60cm até 2100, isso caso sejam implementadas, agora, medidas e políticas públicas comprometidas com a diminuição da emissão de gases de efeito estufa. Em cenários mais pessimistas, onde não existe controle algum, calcula-se que a elevação pode ser de até 1 metro!

 

Com as predições do novo relatório do IPCC, Ilana alertou que devemos cobrar posicionamento e políticas públicas dos governantes, para ajudar a conter as mudanças climáticas no mundo todo. Alguns efeitos já são irreversíveis, como apontou a pesquisadora, e é necessário agir agora para evitar que os cenários mais pessimistas se concretizem.

 

O Papos de Física é um evento mensal de divulgação científica promovido pelo ICTP-SAIFR, que ocorre todo início de mês no Tubaína Bar (R. Haddock Lobo, 94). Nesses eventos, físicos levam assuntos de ciência que despertam curiosidade do público para uma conversa informal e descontraída, de forma acessível a todos. A última edição do ano, aconteceu no dia 07 de novembro, com o tema “Sistemas Complexos: o Olhar da Física”. Fique atento ao blog para saber como foi o evento e nas nossas redes sociais para saber da programação de 2020!

 

Para saber mais sobre mudanças climáticas: