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INTRODUCTION
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Running Coupling Constant o

Baikov I—,—o—{‘ 7
Davier Hro—i %
;:iTo 4'_\._' 5 aS(QZ) v Tdecays (N3LO)
i + < a DIS jets (NLO
S E % o ch\J: ;‘)‘uxu l\(\mm (NLO)
HPQCD (wison loops ) hp‘ﬂ‘ 031} o e'e jets & shapes (res. NNLO)
HPQCD (cccorelators) — Hpo e e.w. precision fits (N3LO)
Maltmann (wilson loops) ~ {-#— g v pp —: JctsmeOy
PACS-CS (s ° %" v pp —> tt (NNLO)
ETM (ghost-gluon vertex) H-o— m 0.2
BBGPSV (static potent; ) o ‘
ABM ._._;| >4 g
BBG taanl = R
Rl 3 & 01l
vl f:j § 5 = QCD ay(M,)=0.1181+0.0011 |
i e e 1 10 100 1000
i | QI[GeV]
JADE(s) |—:o—_| -
Di tori (3)) l—‘o-—i Zr
JADE @) e o
DWm }—0:——0 %
Abbate (1) e— . —
e E The strong coupling constant o (1), taken at a
femer—e it 2
In - _ .

IR fixed reference scale 1, “plays a key role in the
Ccms o | hadron bl
(tt cross section) ' collider . g . . .

011 0115 012 0125 013 understanding of QCD and in its application to
April 2016 as(Mi)

collider physics”:
e (1) is an important source of uncertainty in the Standard Model predictions,

e () “yields one of the essential boundary conditions for completions of the
Standard Model at high energy”.

The value of as should also be determined with good accuracy over as large a range
of scales as possible, in order to reveal potential anomalous running in the strength
of the strong interaction.
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Determination of o, using Lattice QCD (I)

The Lattice QCD average (FLAG2019)

5
ot (Mz) = 0.11823(81) ,

yielding
AD) (M) = 211(10) MeV

(30% error reduction from 2016, error about 4 times smaller than 15
years ago) is by now a factor two more precise than the nonlattice
world average (PDG 18)

ot2) (Mz) = 0.1174(16) .
The present world average is (PDG 18)
ol (Mz) = 0.1181(11)  with AP (M) = 210(14) MeV.
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Determination of o, using Lattice QCD (II)

FLAG considers the following lattice evaluations of the
strong-coupling constant o (1):

m step-scaling methods (talk by Tomasz Korzec),

m ¢ q potential (talks by Yuichiro Kiyo and Johannes
Weber),

m short-distance lattice quantities, e.g. Wilson loops,

B heavy-quark-current two-point functions (talk by
Peter Petreczky),

m eigenvalue spectrum of the Dirac operator (talk by
Shoji Hashimoto),

m ghost-gluon vertex (review, this talk).
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a, from Vertices

m “The most intuitive and in principle direct way to
determine the coupling constant in QCD”

m Consider one of the vertices and a suitable
combination of renormalization constants to relate
bare (lattice) and renormalized coupling constant
(textbook definitions)

m Requires gauge fixing and a nonperturbative
renormalization condition: usually, Landau gauge
and the vertex equal to its tree-level value at some
scale . (various MOM schemes)

m Possible (IR) Gribov-copy effects
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a; from the Ghost-Gluon Vertex

Ghostgluon verax, one momentum vanishing
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The running coupling constant

as(p?) = a0 Z3(p*) Z3(p?)/ Z3 (p°)
from the ghost-gluon vertex (A.C. et

al., 2004).
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Ghost-gluon vertex, orthogonal momenta

Dressing function of the ghost-gluon
vertex (T. Boz et al., 2019). Small
unquenching effects in the ghost
sector.

Problem: vertices are usually noisy =- use propagators!
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Different MOM Schemes

The MOM-schemes require the values of properly chosen Green functions to be fixed

(usually to their tree-level values) at a given (u-dependent) configuration of external
momenta (subtraction point).

Considering gluon and ghost propagators and ghost-gluon vertex, the most common
ones are:

B MOM scheme: the vertex reduces to the tree-level one at a symmetric
subtraction point g7 = ¢3 = ¢35 = p?;

B MOM scheme: the vertex reduces to the tree-level one at an asymmetric
subtraction point ¢? = ¢2 = p?, ¢35 = 0;

B MOM-Taylor scheme: with a zero-momentum incoming ghost the

renormalization constant Zl(;ﬂ) for the proper ghost-gluon vertex (in Landau
gauge) is equal to one.

B miniMOM scheme: one requires Z; (u2) = ZM5(p2) and uses ZM5 (u2) = 1
in Landau gauge (non-renormalization of the ghost-gluon vertex).
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o from Gluon and Ghost Propagators
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(Bloch et al., 2004)

The strong coupling constant (in Landau gauge) ar(p?) defined as the a — 0

limit of cvo(a) Fs(p?, a)J%(p?, a), where Fg(p?,a) and Jg(p?, a) are the (bare)
gluon and ghost form factors.

General questions to be addressed: non-perturbative effects, breaking of rota-
tional symmetry.
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o, In the MOM-Taylor Scheme
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(Blossier et al., 2014; 4-loop expression)

The Taylor coupling a7 (g?) (ghost gluon vertex in Landau gauge) is defined

as the A — +oo limit of 90( )G(qQ,AQ)FQ(qQ,AQ), where G(q?,A?) and
F(q?, A?) are the (bare) gluon and ghost form factors (and A is an UV cutoff).
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o, in the miniMOM Scheme
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(Sternbeck et al., 2012; 4-loop expression)

The strong coupling constant (in Landau gauge) o (p) is defined as the

2
a — 0 limit of 921—(:>ZD(p, a)ZZ(p,a), where Zp(p,a) and Zg(p,a) are the
(bare) gluon and ghost form factors. Data fitted without A% and 1/p® contri-
butions.
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LATTICE SETUP

(how to evaluate propagators and vertices

on the lattice)
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QCD on a Lattice

Three ingredients:

1. Quantization by path integrals = sum over

| / 4
configurations with “weights” e’ /",
2. Euclidean formulation (analytic continua- ¥ /‘
tion to imaginary time) = weight becomes .// A
e S/, A/
; /
@
3. Discrete space-time (lattice spacing «) and z) 7

finite-size (L) lattices.

B The UV cutoff a goes to zero in the continuum (= physical) limit:
rigorous formulation of quantum field theory.

B The IR cutoff L implies an IR cut at small momenta p,,,;,, ~ 1/L.

B Connection to continuum physics: L — +oco (infinite-volume
limit), « — 0 (continuum limit), m, — physical values.
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Gauge-Related Lattice Features

B Gauge action
p 3
S — g D ReTrUD

written in terms of oriented plaquettes Un, formed by the
link variables U, ,, = ¢90%4.@)7 (group elements).

m Under gauge transformations U, ,, — g(z) U, . g'(x + p),
where g € SU(N) = closed loops are gauge-invariant.

m Reduces to the usual action for « — 0 (with 3 = 2N /g7).
W Integration volume is finite: no need for gauge-fixing.

® When gauge fixing, procedure is incorporated in the
simulation, no need to consider Faddeev-Popov matrix
and ghost fields explicitly.
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Numerical Simulations

When we are interested in gauge-dependent quantities we con-
sider the following steps:

1. Choose an initial configuration Cyp = U, (z) € SU(N,)
Thermalize the initial configuration (heat-bath, etc.) Co — C;

Fix the gauge for the configuration C; with : = 1,2, ...

S CORRRR

Evaluate (gauge-dependent) quantities using the configura-
tion C;

5. Produce a new (independent) configuration C; — C; 11
6. Go back to step 3

We do not need to simulate anti-commuting variables or to evalu-
ate the determinant of the Faddeev-Popov matrix!
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Lattice Landau Gauge

In the continuum: 0, A, (z) = 0. On the lattice the (minimal) Landau
gauge is imposed by minimizing the functional

S[U; gl = =) TrUi(x),

where g(z) € SU(N) and Uf(z) = g(x) Uu(x) g'(x + ae,) is the
lattice gauge transformation. By considering the relations U, (z) =
ele904u(r) and g(z) = €7*)  we can expand S[U;g| (for small 7):

S[U;g] = S[U; 1] + 7 S [U; L](b, z) 8°(z)

2
/7

- % 0°(x) S [U; L] (b, x5 ¢,9) 0°(y) + -

where S [U;1](b,z;c,y) = M(b,x;c,y)[A] is a lattice discretiza-
tion of the Faddeev-Popov operator —D - 0 with A, (z) =

[Uﬂ(m) a UJ(I)}traceleSS /(24).
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Constraining the Functional Integral

B At a stationary point S’ [U; 1.](b, z) = 0 one has >, AL (x) — AL (x — aey) =0,
which is a discretized version of the (continuum) Landau gauge condition. At a lo-
cal minimum one also has M(b, x; ¢, y)[A] > 0 . This defines the first Gribov re-
gonQ={U:9-A=0,M >0} = local minima of S[U; w] (V.N. Gribov, 1978).

B All gauge orbits intersect 2 (Dell’Antonio et al., 1991) but the gauge fixing is not
unique (Gribov copies).

B Absolute minima of S[U; w] = fundamental modular region A, free of Gribov
copies in its interior. (Finding the absolute minimum is a spin-glass problem.)

B Perturbation theory sits at the “center” of (0.

ICTP-SAIFR QCD Parameters Workshop October 4, 2019



Gluon and Ghost Propagators

As a consequence of the restriction of the measure to the region €2:

M In minimal Landau gauge the gluon propagator

Db (p) = 3 e 348 (2) A (0)) = 6 (g,w - p;;f”) D(?)

x

is suppressed in the IR limit, i.e. D(0) is finite (and nonzero) = change of
concavity at intermediate momenta.

B Infinite volume favors configurations on the first Gribov horizon, where A5,
of M goes to zero. In turn, the ghost propagator

e—2mik-(z—y)

60 = a7 X (M @ma),

x! y’a’

IS IR enhanced at intermediate momenta, but it is free-like in the IR limit.

Consider momenta p = 1.5 GeV (at least), in order to avoid complicated nonpertur-
bative effects on the (gluon, ghost) propagators.
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Momenta on the Lattice

The components of the lattice momenta are given by

pu =2 sin (1), pu=0,1,...,N/2.

For a given lattice side /N and lattice spacing a we have (in 4d)

2 ( s ) 27 4 (77) 4
n = —sin|{— )~ —, = —sin|—) = —
Pmin 4 N 7 Pmax . 9

where L = Na.

Constraint: with Lm, > 4,i.e. L 2 5.66 fermi, one has p,,,;, ~ 0.22 GeV. Also
a is small enough to allow simulating the heaviest quark mass considered.

For example: a = 0.1 fermi (and N = 56) = pimnaxr =~ 7.9 GeV.
In Blossier et al. (2014): a ~ 0.06 fermiand V = 483 x 96.

FLAG requirements for the continuum limit: for o = 0.3 one should have ap < ¢,
where ¢ depends on the type of O(a) improvement used in the lattice setup.
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Breaking of Rotational Invariance (I)

a’ (3 p

H(4) artifacts for the ghost form factor in Landau gauge (Blossier et al., 2014): a
lattice quantity Q(a*p?), as a function of momenta p?, depends on p* = >~ p7, but
also on p!*) =37 pl, pl%, etc. Global fit of the data using

Q(a?p?, a*p!, apl%), . ) = Q(a®p?) + (ro + r1ap?) a?pl¥ /p? + ...
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Breaking of Rotational Invariance (II)
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H (4) artifacts for the gluon form factor in Landau gauge (Becirevic et
al., 1999): comparison of H (4) extrapolation with the “democratic”
selection and the use of two different lattice momenta.
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Breaking of Rotational Invariance (11I)

LEE A EE R ] | AL A LR S | LEE: R
i ) 2 all cRagenal 1.
b
e H
| i
___]' ST - /

I~ 1EFHAHH e + 17" - (1} [N
G sl ol o unl ISR T 11001 MR TET | FELEr T
L1t 1 ] LA Ll

Hypercubic corrections (at one loop) for the ghost form factor (left)
and for the gluon form factor (right) in Landau gauge (Sternbeck et
al., 2012).
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POSSIBLE IMPROVEMENT(S)

ICTP-SAIFR QCD Parameters Workshop October 4, 2019



o from the Ghost Propagator (I)

Evaluate o (1) considering only the ghost propagator:

1. rotational analysis for one quantity (not two!), which is also better behaved;
2. small unquenching effect = setup the analysis in the quenched case;

3. not necessary to take Z1(u2) = 1 = one may consider other gauges (¢ # 0)
and use different determinations of « (12);

4. all the necessary ingredients are available!

Following (Becirevic et al., 1999, gluon case) one may consider the bare ghost
propagator (A.C. et al., 2004; Boucaud et al., 2005) GGz (x) and the two coupled
differential equations (in any renormalization scheme)

dlog Zq (1 da
W _Tela), = (o),
dlog dlog

where Zg(u) = p*Gp(p).
Note: only in a MOM scheme is the function I' («) the anomalous dimension of
the ghost renormalization constant.
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o from the Ghost Propagator (I1)

For example, at two loops we can write

d B - Bo b1
dlog 1 a = Ba) = — {EO‘Q + (27) a® + O(O/l)}

and solve these equations obtaining

27 (al 1 )} { ) rl/ﬁé [%BO +51a(uo>]ﬂl/ﬁ8

Bo - a(po) 27 Bo + B1a(q)

T eXp{ (@) a(mo)

and

g1

a(q) ]90/50 [ 27 Bo + B1alq) ]ﬁ‘
o(p0) 27 Bo + B1 apo)

|Q
or

Zg(q) = Zag(po) {
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o from the Ghost Propagator (11I)

A fit of the data (¢, Zc(q)) provides a determination of Z (1) and
a( o) at the scale 1. The fit can be done in any scheme for which
the coefficients ¢; and ; are known, up to some order. The result
for a(10) allows to evaluate Agcp in that scheme.

Some recent results:

B complete set of vertex and wave function with NV, fermions,
In an arbitrary representation, to five-loop order for a generic
covariant gauge and an arbitrary simple gauge group, in the
minimal subtraction scheme (Chetyrkin et al., 2017);

B self-energies and a set of three-particle vertex functions (at
points where one of the momenta vanishes) at the four-loop
level in the MS scheme, for a generic gauge group and with
the full gauge dependence; they also derive the five-loop beta
function in the miniIMOM scheme (Ruijl et al., 2017).
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Lattice Linear Covariant Gauge

We want to impose the gauge condition 9,, A (x) = A”(x), for real-valued func-
tions A”(x), generated using a Gaussian distribution with width /€.

The Landau gauge [A?(x) = 0] is obtained on the lattice by minimizing the func-
tional Spc(Us gl = -2, TrUj(x).

The lattice linear covariant gauge condition V - A%(z) = 3= A% (z + eu/2) —
Al (z — ey /2) = AP(z) may be obtained by minimizing the functional (A.C. et al.,
2009) SrcclU, 9, Al = SpelU; g] + RTr ), ig(z)A(z) .

Conceptual problem: using the standard compact discretization, the gluon field is
bounded while the four-divergence of the gluon field satisfies a Gaussian distri-
bution, i.e. it is unbounded. This may give rise to convergence problems when
considering large values of &.

The limit £ — 0 is (numerically) well behaved (A.C. et al., 2010).

The ghost propagator in linear covariant gauge has been recently evaluated for
the first time (A.C. et al., 2018).
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Conclusions

1. Using propagators/vertices for the evaluations of the
strong coupling constant a.(z) is an interesting ap-
proach which, hopefully, will again be used in the near
future

2. Recent results (in the continuum and on the lattice) al-
low to extend the analysis to the linear covariant gauge
(at least for relatively small value of ¢)

3. One needs to attack the breaking of rotational symmetry
In @ more systematic way (improved gauge fixing?)
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THANKS!
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Gluon dressing function p? D(p?) (in
minimal Landau gauge, N = 80 and
g = 2.2) for four different sets of mo-
menta, using unimproved momenta

p? = 4>, sin?(wn, /N).
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Breaking of Rotational Invariance (1I)

gluon propagator ghost propagator
N4 T4 T6 < x2 > T4 re | < x2 >
484 0.054 | 0.000 2.62 0.016 | — 1.30
724 0.084 | -0.006 | 2.46 0.017 | — | 2.41
96+ 0.107 | -0.015 | 2.35 0.014 | — | 0.48
120% || 0.073 | -0.005 | 2.39 0.016 | — | 38.02
804 0.091 | -0.006 | 2.70 0.021 | — 1.70
1284 || 0.059 | -0.002 1.96 0.016 | — | 2.85
160* || 0.070 | -0.006 | 2.67 0.019 | — | 2.95
1924 || 0.073 | -0.006 | 2.01 0.008 | — | 2.29

For each lattice volume VV = N* we show the parameters r, and rg used to define
improved momenta p? = > ps + 4 by, + 76 P, With p,, = 2 sin (7 n,/N), for the
gluon and ghost propagators.
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Breaking of Rotational Invariance (11I)
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Gluon dressing function p? D(p?) (in
minimal Landau gauge, N = 80 and

£ = 2.2) for four different sets of mo-
menta, using improved momenta.
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Gribov ghost form factor o (p?) (in min-
imal Landau gauge N = 120 and
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momenta, using improved momenta.
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Breaking of Rotational Invariance (IV)
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Gluon propagator D(p?) (in minimal
Landau gauge, N = 80 and § = 2.2)
for four different sets of momenta, us-
ing improved momenta.
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Comparison with Perturbation Theory

45 %
4l
35 | . Fit of the Landau gluon
3t , propagator D(k) using
< st 1 ¢/p*(k) in the SU(2)
o | - caseatgs=2.7and V =
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Comparison with RG-Improved PT

Fit of the Landau gluon
propagator D(k) using
¢ [log (p?(k)/A?)] " /p? (k)
in the SU(2) case at
B = 27 and V = 16
Here, a = /By = 13/22,
where by is (minus) the
first coefficient of the beta
function, and ~y is (minus)
the first coefficient of the
anomalous dimension of
the gluon field.

10 |
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Anomalous Dimension of the Gluon Field

0.36 T T I I T T T T T
0.34 . .
Numerical evaluation of
0.32 « considering the best
5 03 x*/dof.
3
o g Theoretical value: 0.5909.
0.26 Numerical value:
0.24 0.590 4+ 0.001!
0.22 ——
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