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INTRODUCTION
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Running Coupling Constant αs
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The strong coupling constant αs(µ), taken at a

fixed reference scale µ, “plays a key role in the

understanding of QCD and in its application to

collider physics”:

• αs(µ) is an important source of uncertainty in the Standard Model predictions,

• αs(µ) “yields one of the essential boundary conditions for completions of the

Standard Model at high energy”.

The value of αs should also be determined with good accuracy over as large a range

of scales as possible, in order to reveal potential anomalous running in the strength

of the strong interaction.
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Determination of αs using Lattice QCD (I)

The Lattice QCD average (FLAG2019)

α
(5)

MS
(MZ) = 0.11823(81) ,

yielding

Λ
(5)

MS
(MZ) = 211(10) MeV ,

(30% error reduction from 2016, error about 4 times smaller than 15

years ago) is by now a factor two more precise than the nonlattice

world average (PDG 18)

α
(5)

MS
(MZ) = 0.1174(16) .

The present world average is (PDG 18)

α
(5)

MS
(MZ) = 0.1181(11) with Λ

(5)

MS
(MZ) = 210(14) MeV.
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Determination of αs using Lattice QCD (II)

FLAG considers the following lattice evaluations of the

strong-coupling constant αs(µ):

step-scaling methods (talk by Tomasz Korzec),

q q potential (talks by Yuichiro Kiyo and Johannes

Weber),

short-distance lattice quantities, e.g. Wilson loops,

heavy-quark-current two-point functions (talk by

Peter Petreczky),

eigenvalue spectrum of the Dirac operator (talk by

Shoji Hashimoto),

ghost-gluon vertex (review, this talk).
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αs from Vertices

“The most intuitive and in principle direct way to

determine the coupling constant in QCD”

Consider one of the vertices and a suitable

combination of renormalization constants to relate

bare (lattice) and renormalized coupling constant

(textbook definitions)

Requires gauge fixing and a nonperturbative

renormalization condition: usually, Landau gauge

and the vertex equal to its tree-level value at some

scale µ (various MOM schemes)

Possible (IR) Gribov-copy effects
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αs from the Ghost-Gluon Vertex
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The running coupling constant

αs(p2) = α0 Z3(p2)Z̃2
3 (p

2)/Z̃2
1 (p

2)

from the ghost-gluon vertex (A.C. et

al., 2004).

Dressing function of the ghost-gluon

vertex (T. Boz et al., 2019). Small

unquenching effects in the ghost

sector.

Problem: vertices are usually noisy ⇒ use propagators!
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Different MOM Schemes

The MOM-schemes require the values of properly chosen Green functions to be fixed

(usually to their tree-level values) at a given (µ-dependent) configuration of external

momenta (subtraction point).

Considering gluon and ghost propagators and ghost-gluon vertex, the most common

ones are:

MOM scheme: the vertex reduces to the tree-level one at a symmetric

subtraction point q21 = q22 = q23 = µ2;

M̃OM scheme: the vertex reduces to the tree-level one at an asymmetric

subtraction point q21 = q22 = µ2, q23 = 0;

MOM-Taylor scheme: with a zero-momentum incoming ghost the

renormalization constant Z̃1(µ2) for the proper ghost-gluon vertex (in Landau

gauge) is equal to one.

miniMOM scheme: one requires Z̃1(µ2) = Z̃MS
1 (µ2) and uses Z̃MS

1 (µ2) = 1

in Landau gauge (non-renormalization of the ghost-gluon vertex).
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αs from Gluon and Ghost Propagators

(Bloch et al., 2004)

The strong coupling constant (in Landau gauge) αR(p2) defined as the a → 0

limit of α0(a)FB(p2, a)J2
B(p2, a), where FB(p2, a) and JB(p2, a) are the (bare)

gluon and ghost form factors.

General questions to be addressed: non-perturbative effects, breaking of rota-

tional symmetry.
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αs in the MOM-Taylor Scheme

(Blossier et al., 2014; 4-loop expression)

The Taylor coupling αT (q2) (ghost-gluon vertex in Landau gauge) is defined

as the Λ → +∞ limit of
g2
0
(Λ2)

4π
G(q2,Λ2)F 2(q2,Λ2), where G(q2,Λ2) and

F (q2,Λ2) are the (bare) gluon and ghost form factors (and Λ is an UV cutoff).
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αs in the miniMOM Scheme

(Sternbeck et al., 2012; 4-loop expression)

The strong coupling constant (in Landau gauge) αMM
s (p) is defined as the

a → 0 limit of
g2
0
(a)

4π
ZD(p, a)Z2

G(p, a), where ZD(p, a) and ZG(p, a) are the

(bare) gluon and ghost form factors. Data fitted without A2 and 1/px contri-

butions.

ICTP-SAIFR QCD Parameters Workshop October 4, 2019



LATTICE SETUP

(how to evaluate propagators and vertices

on the lattice)
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QCD on a Lattice

Three ingredients:

1. Quantization by path integrals ⇒ sum over

configurations with “weights” ei S/~.

2. Euclidean formulation (analytic continua-

tion to imaginary time) ⇒ weight becomes

e−S/~.

3. Discrete space-time (lattice spacing a) and

finite-size (L) lattices.

The UV cutoff a goes to zero in the continuum (= physical) limit:

rigorous formulation of quantum field theory.

The IR cutoff L implies an IR cut at small momenta pmin ∼ 1/L.

Connection to continuum physics: L → +∞ (infinite-volume

limit), a → 0 (continuum limit), mq → physical values.
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Gauge-Related Lattice Features

Gauge action

S =
β

3

∑

✷

ReTrU✷

written in terms of oriented plaquettes U✷, formed by the

link variables Ux,µ ≡ eig0aA
b
µ(x)Tb (group elements).

Under gauge transformations Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(N) ⇒ closed loops are gauge-invariant.

Reduces to the usual action for a → 0 (with β = 2N/g20).

Integration volume is finite: no need for gauge-fixing.

When gauge fixing, procedure is incorporated in the

simulation, no need to consider Faddeev-Popov matrix

and ghost fields explicitly.
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Numerical Simulations

When we are interested in gauge-dependent quantities we con-

sider the following steps:

1. Choose an initial configuration C0 = Uµ(x) ∈ SU(Nc)

2. Thermalize the initial configuration (heat-bath, etc.) C0 → C1

3. Fix the gauge for the configuration Ci with i = 1, 2, . . .

4. Evaluate (gauge-dependent) quantities using the configura-

tion Ci

5. Produce a new (independent) configuration Ci → Ci+1

6. Go back to step 3

We do not need to simulate anti-commuting variables or to evalu-

ate the determinant of the Faddeev-Popov matrix!
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Lattice Landau Gauge

In the continuum: ∂µ Aµ(x) = 0. On the lattice the (minimal) Landau

gauge is imposed by minimizing the functional

S[U ; g] = −

∑

x,µ

Tr Ug
µ(x) ,

where g(x) ∈ SU(N) and Ug
µ(x) = g(x) Uµ(x) g

†(x + aeµ) is the

lattice gauge transformation. By considering the relations Uµ(x) =

eiag0Aµ(x) and g(x) = eiτθ(x) , we can expand S[U ; g] (for small τ ):

S[U ; g] = S[U ; 1⊥] + τ S
′

[U ; 1⊥](b, x) θb(x)

+
τ2

2
θb(x)S

′′

[U ; 1⊥](b, x; c, y) θc(y) + . . .

where S
′′

[U ; 1⊥](b, x; c, y) = M(b, x; c, y)[A] is a lattice discretiza-

tion of the Faddeev-Popov operator −D · ∂ with Aµ(x) =
[

Uµ(x)− U †
µ(x)

]

traceless
/(2i).
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Constraining the Functional Integral

Ω
Λ

Γ

At a stationary point S
′

[U ; 1⊥](b, x) = 0 one has
∑

µ Ab
µ(x)−Ab

µ(x− aeµ) = 0,

which is a discretized version of the (continuum) Landau gauge condition. At a lo-

cal minimum one also has M(b, x; c, y)[A] ≥ 0 . This defines the first Gribov re-

gion Ω ≡ {U : ∂ ·A = 0,M ≥ 0} ≡ local minima of S[U ;ω] (V.N. Gribov, 1978).

All gauge orbits intersect Ω (Dell’Antonio et al., 1991) but the gauge fixing is not

unique (Gribov copies).

Absolute minima of S[U ;ω] ≡ fundamental modular region Λ, free of Gribov

copies in its interior. (Finding the absolute minimum is a spin-glass problem.)

Perturbation theory sits at the “center” of Ω.
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Gluon and Ghost Propagators

As a consequence of the restriction of the measure to the region Ω:

In minimal Landau gauge the gluon propagator

Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉 = δab

(
gµν − pµ pν

p2

)
D(p2)

is suppressed in the IR limit, i.e. D(0) is finite (and nonzero) ⇒ change of

concavity at intermediate momenta.

Infinite volume favors configurations on the first Gribov horizon, where λmin

of M goes to zero. In turn, the ghost propagator

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
〈M−1(a, x; a, y) 〉 ,

is IR enhanced at intermediate momenta, but it is free-like in the IR limit.

Consider momenta p ∼> 1.5 GeV (at least), in order to avoid complicated nonpertur-

bative effects on the (gluon, ghost) propagators.
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Momenta on the Lattice

The components of the lattice momenta are given by

pµ = 2 sin
(π pµ

N

)
, pµ = 0, 1, . . . , N/2 .

For a given lattice side N and lattice spacing a we have (in 4d)

pmin =
2

a
sin

( π

N

)
∼ 2π

L
, pmax =

4

a
sin

(π

2

)
=

4

a
,

where L = Na.

Constraint: with Lmπ ≥ 4, i.e. L ∼> 5.66 fermi, one has pmin ≈ 0.22 GeV. Also

a is small enough to allow simulating the heaviest quark mass considered.

For example: a = 0.1 fermi (and N ≈ 56) ⇒ pmax ≈ 7.9 GeV.

In Blossier et al. (2014): a ≈ 0.06 fermi and V = 483 × 96.

FLAG requirements for the continuum limit: for α = 0.3 one should have ap < c,

where c depends on the type of O(a) improvement used in the lattice setup.
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Breaking of Rotational Invariance (I)

H(4) artifacts for the ghost form factor in Landau gauge (Blossier et al., 2014): a

lattice quantity Q(a2p2), as a function of momenta p2, depends on p2 =
∑

µ p2µ but

also on p[4] =
∑

µ p4µ, p[6], etc. Global fit of the data using

Q(a2p2, a4p[4], a6p[6], . . .) = Q(a2p2) +
(
r0 + r1a

2p2
)
a2p[4]/p2 + . . .
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Breaking of Rotational Invariance (II)

H(4) artifacts for the gluon form factor in Landau gauge (Becirevic et

al., 1999): comparison of H(4) extrapolation with the “democratic”

selection and the use of two different lattice momenta.
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Breaking of Rotational Invariance (III)

Hypercubic corrections (at one loop) for the ghost form factor (left)

and for the gluon form factor (right) in Landau gauge (Sternbeck et

al., 2012).
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POSSIBLE IMPROVEMENT(S)
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αs from the Ghost Propagator (I)

Evaluate αs(µ) considering only the ghost propagator:

1. rotational analysis for one quantity (not two!), which is also better behaved;

2. small unquenching effect ⇒ setup the analysis in the quenched case;

3. not necessary to take Z̃1(µ2) = 1⇒ one may consider other gauges (ξ 6= 0)

and use different determinations of αs(µ);

4. all the necessary ingredients are available!

Following (Becirevic et al., 1999, gluon case) one may consider the bare ghost

propagator (A.C. et al., 2004; Boucaud et al., 2005) GB(µ) and the two coupled

differential equations (in any renormalization scheme)

d logZG(µ)

d log µ2
= ΓG(α) ,

dα

d log µ
= β(α) ,

where ZG(µ) = µ2GB(µ).

Note: only in a MOM scheme is the function ΓG(α) the anomalous dimension of

the ghost renormalization constant.
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αs from the Ghost Propagator (II)

For example, at two loops we can write

ΓG

[
α(µ2)

]
= −

[
g0

4π
α +

g1

(4π)2
α2 + O

(
α3

) ]
,

d

d log µ
α = β(α) = −

[
β0

2π
α2 +

β1

(2π)2
α3 + O

(
α4

) ]

and solve these equations obtaining

q = µ0 exp

[
2π

β0

(
1

α(q)
− 1

α(µ0)

)] [
α(q)

α(µ0)

]β1/β
2

0
[
2π β0 + β1 α(µ0)

2π β0 + β1 α(q)

]β1/β
2

0

and

ZG(q) = ZG(µ0)

[
α(q)

α(µ0)

]g0/β0
[

2π β0 + β1 α(q)

2π β0 + β1 α(µ0)

] g1
2 β1

−

g0
β0

.
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αs from the Ghost Propagator (III)

A fit of the data (q, ZG(q)) provides a determination of ZG(µ0) and

α(µ0) at the scale µ0. The fit can be done in any scheme for which

the coefficients gi and βi are known, up to some order. The result

for α(µ0) allows to evaluate ΛQCD in that scheme.

Some recent results:

complete set of vertex and wave function with Nf fermions,

in an arbitrary representation, to five-loop order for a generic

covariant gauge and an arbitrary simple gauge group, in the

minimal subtraction scheme (Chetyrkin et al., 2017);

self-energies and a set of three-particle vertex functions (at

points where one of the momenta vanishes) at the four-loop

level in the MS scheme, for a generic gauge group and with

the full gauge dependence; they also derive the five-loop beta

function in the miniMOM scheme (Ruijl et al., 2017).
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Lattice Linear Covariant Gauge

We want to impose the gauge condition ∂µAb
µ(x) = Λb(x), for real-valued func-

tions Λb(x), generated using a Gaussian distribution with width
√
ξ.

The Landau gauge [Λb(x) = 0] is obtained on the lattice by minimizing the func-

tional SLG[U ; g] = −∑
x,µ TrUg

µ(x).

The lattice linear covariant gauge condition ∇ · Ab(x) =
∑

µ Ab
µ(x + eµ/2) −

Ab
µ(x− eµ/2) = Λb(x) may be obtained by minimizing the functional (A.C. et al.,

2009) SLCG[U, g,Λ] = SLG[U ; g] + ℜTr
∑

x ig(x)Λ(x) .

Conceptual problem: using the standard compact discretization, the gluon field is

bounded while the four-divergence of the gluon field satisfies a Gaussian distri-

bution, i.e. it is unbounded. This may give rise to convergence problems when

considering large values of ξ.

The limit ξ → 0 is (numerically) well behaved (A.C. et al., 2010).

The ghost propagator in linear covariant gauge has been recently evaluated for

the first time (A.C. et al., 2018).
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Conclusions

1. Using propagators/vertices for the evaluations of the

strong coupling constant αs(µ) is an interesting ap-

proach which, hopefully, will again be used in the near

future

2. Recent results (in the continuum and on the lattice) al-

low to extend the analysis to the linear covariant gauge

(at least for relatively small value of ξ)

3. One needs to attack the breaking of rotational symmetry

in a more systematic way (improved gauge fixing?)
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THANKS!

ICTP-SAIFR QCD Parameters Workshop October 4, 2019



Breaking of Rotational Invariance (I)
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Breaking of Rotational Invariance (II)

gluon propagator ghost propagator

N4 r4 r6 < χ2 > r4 r6 < χ2 >

484 0.054 0.000 2.62 0.016 — 1.30

724 0.084 -0.006 2.46 0.017 — 2.41

964 0.107 -0.015 2.35 0.014 — 0.48

1204 0.073 -0.005 2.39 0.016 — 3.02

804 0.091 -0.006 2.70 0.021 — 1.70

1284 0.059 -0.002 1.96 0.016 — 2.85

1604 0.070 -0.006 2.67 0.019 — 2.95

1924 0.073 -0.006 2.01 0.008 — 2.29

For each lattice volume V = N4 we show the parameters r4 and r6 used to define

improved momenta p2 =
∑

µ p̂2µ + r4 p̂4µ + r6 p̂6µ with p̂µ = 2 sin (π nµ/N), for the

gluon and ghost propagators.
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Breaking of Rotational Invariance (III)
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Breaking of Rotational Invariance (IV)
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Comparison with Perturbation Theory
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Comparison with RG-Improved PT
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in the SU(2) case at

β = 2.7 and V = 164.

Here, α = γ0/β0 = 13/22,

where b0 is (minus) the

first coefficient of the beta

function, and γ0 is (minus)

the first coefficient of the

anomalous dimension of

the gluon field.
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Anomalous Dimension of the Gluon Field

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.5  0.52  0.54  0.56  0.58  0.6  0.62  0.64  0.66  0.68  0.7

χ2
 /
 d

o
f

α

Numerical evaluation of

α considering the best

χ2/dof .

Theoretical value: 0.5909.

Numerical value:

0.590± 0.001!
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