Determination of the QCD coupling constant from the static energy and the free energy

J. H. Weber¹ and A. Bazavov¹, N. Brambilla³, X. Garcia y Tormo⁴, P. Petreczky², J. Soto⁴, A. Vairo³ (**TUMQCD collaboration**)

¹Michigan State University
 ²Brookhaven National Lab
 ³Technische Universität München
 ⁴Universitat de Barcelona

Workshop on Determination of Fundamental QCD Parameters ICTP-SAIFR, São Paulo, Brazil, 10/03/2019**TUMQCD: PR D90 (2014)** \Rightarrow *TUMQCD: arXiv:1907.11747*

Outline	Lattice QCD	Static energy	Singlet free energy	
•				
Outline				

2 Lattice QCD

3 Static energy

- Static energy in perturbation theory
- Static energy on the lattice
- 4 Singlet free energy

5 Summary

- We compute observables on the lattice at sufficiently high scales for the weak-coupling approach to be applicable
- We compare continuum extrapolated lattice results to perturbative results in $\overline{\mathsf{MS}}$ scheme to determine parameters

The QCD static energy of a (static) quark-antiquark pair (2010-2019)

- The scale is set by the (inverse) size of the system, $\nu=1/r$
- Other scales are involved, i.e. the ultra-soft scale $\mu_{us} \sim \alpha_s/r$
- The static energy receives contributions from the singlet potential
 - renormalon subtraction required in the dimensional regularization
 - $\bullet\,$ diverges as $\sim 1/a$ towards continuum limit of the lattice regularization

Bibliog	aphv : QC	D static ene	rgv of a quark-ar	ntiquark pair	
0	00	00	0000000000000	000	00
Outline	Introduction	Lattice QCD	Static energy	Singlet free energy	

Extension to 4 sea quark flavors is planned by the TUMQCD collaboration

 ¹Brambilla et al., Phys. Rev. Lett. 105 (2010) 212001 Bazavov et al., Phys. Rev. D86 (2012) 114031 Bazavov et al., Phys. Rev. D90 (2014) 7, 074038 Bazavov et al. [TUMQCD], arXiv:1907.11747
 ²Jansen et al. [ETMC], JHEP 1201, 025 (2012) Karbstein et al., JHEP 1409, 114 (2014) Karbstein et al., Phys.Rev. D98 (2018) no.11, 114506
 ³Takaura et al., JHEP 1904, 155 (2019) Takaura et al., JHS

Outline	Introduction	Lattice QCD	Static energy	Singlet free energy	Summary
		•0			
Why latt	ice QCD?				

- QCD is fraught with UV divergences that need regularization
- $\bullet\,$ Regulators break symmetries or introduce unphysical properties and introduce some artificial scale μ
- We must remove the regulator before comparing to the real world
 - The lattice approach regulates UV divergences through a finite lattice spacing and IR divergences through a finite box size
 - The lattice explicitly respects gauge invariance, but explicitly breaks rotational symmetry and distorts chiral symmetry
 - The lattice regulator can be systematically improved, i.e. discretization effects can be reduced via EFT methods and/or by brute force (smaller lattice spacing, larger box size)
 - The lattice approach lends itself to perturbative and non-perturbative studies of QCD

Outline	Introduction	Lattice QCD	Static energy	Singlet free energy	Summary
	00	00	000000000000	000	00
Gauge ei	nsembles				

- We use the (rooted) Highly Improved Staggered Quark (HISQ)⁴ action for two degenerate light quarks and a physical strange quark
- We use the tree-level Symanzik-improved gauge action
- \bullet Discretization errors of HISQ action scale as $\alpha_s a^2$ and a^4
- We use high statistics ensembles generated by the HotQCD⁵ collaboration for a study of EoS with a pion mass of $m_{\pi} \approx 160 \text{ MeV}$ and a kaon mass of $m_{K} \approx 504 \text{ MeV}$ in the continuum limit.
- We also use extra ensembles generated for another study of EoS at high T with a pion mass of $m_{\pi} \approx 320 \,\mathrm{MeV}$ in the continuum limit⁶

• We use $\left(r^2 \frac{\partial V_S}{\partial r}\right)_{r=r_1} = 1$ to fix the lattice scale, $r_1 = 0.3106(14)(8)(4)$ fm.

$\frac{N_{\sigma}^{3} \times N_{\tau}}{48^{4}}$ $\frac{48^{3} \times 64}{64^{4}}$	$a^{-1} [GeV]$ $\lesssim 2.4$ $\lesssim 3.2$ $\lesssim 4.9$	# TU 8-16K 8-9K 9K	$\frac{N_{\sigma}^{3} \times N_{\tau}}{\frac{48^{4}}{64^{4}}}$	a ⁻¹ [Gev] 2.4 ≲ 7.9	# TU 3K 8K

⁴Follana et al. [HPQCD], Phys.Rev. D75, 054502 (2007)
 ⁵Bazavov et al. [HotQCD], Phys.Rev. D90, 094503 (2014)
 ⁶Bazavov et al., Phys.Rev. D97, no. 1, 014510 (2018))

	00	00	•••••	000	00
Outline	utline Introduction	Lattice QCD	Static energy	Singlet free energy	Summary

Static quark-antiquark energy

• Static energy determined from large-time behavior of Wilson loops

$$E(r) = \lim_{t \to \infty} \mathrm{i} \frac{d}{dt} \langle \ln W(t, r) \rangle, \quad W(t, r) = \exp\left\{\mathrm{i} g \oint_{r, t} dz^{\mu} A_{\mu}\right\}$$

- Known in perturbation theory @ N³LL (dimensional regularization)
- Nonperturbatively calculable in the lattice regularization
- $\bullet\,$ For $r\ll 1/\Lambda_{\rm QCD}$ both schemes must agree, with hierarchy of scales

$$\left\{ \begin{array}{c} V_s \\ r \end{array}
ight\} pprox V_o - V_s \gg \Lambda_{
m QCD}, \qquad \left\{ \begin{array}{c} V_s \\ V_o \end{array}
ight\} pprox - \left\{ \begin{array}{c} -C_F \\ +rac{1}{2N_c} \end{array}
ight\} rac{lpha_s}{r}$$

 Outline
 Introduction
 Lattice QCD
 Static energy
 Singlet free energy
 Summary

 0
 00
 00
 00000000000
 000
 00

Static quark-antiquark energy in perturbation theory

 $\bullet\,$ Static energy determined from large-time behavior of Wilson loops

$$E(r) = \Lambda_s - \frac{C_F \alpha_s}{r} \left(1 + \#\alpha_s + \#\alpha_s^2 + \#\alpha_s^3 + \#\alpha_s^3 \ln \alpha_s + \#\alpha_s^4 \ln^2 \alpha_s + \#\alpha_s^4 \ln \alpha_s + \dots \right) \quad @ \quad N^3 LL$$

• US contributions to the static energy can be understood in pNRQCD

$$\mathbf{E}(\mathbf{r}) = \mathbf{A}_{\mathbf{S}} + \underbrace{\mathbf{V}_{\mathbf{S}}(\mathbf{r}, \mu_{us})}_{\sim \ln^{k}(r\mu_{us})} - i \frac{g^{2}}{N_{c}} V_{A}^{2} \int_{0}^{\infty} dt \underbrace{e^{-it(V_{o} - V_{s})} \langle \operatorname{tr} \ \mathbf{r} \cdot \mathbf{E}(t)\mathbf{r} \cdot \mathbf{E}(0) \rangle (\mu_{us})}_{\sim \ln^{k}(r\mu_{us}), \ \ln^{k}\left(\frac{V_{o} - V_{s}}{\mu_{us}}\right), \ k=1,2,\ldots} + \ldots$$

include the singlet potential and the ultra-soft contribution

• Potential nonrelativistic QCD (pNRQCD) Lagrangian⁷ at NLO

$$\begin{split} \mathcal{L}_{\mathrm{pNRQCD}} &= \mathcal{L}_{\mathrm{light}} + \int d^3 r \, \mathrm{tr} \, \left\{ S^{\dagger} [i\partial_0 - V_s(r,\nu,\mu_{us})]S +)^{\dagger} [iD_0 - V_o(r,\nu,\mu_{us})]O \right\} \\ &+ V_A(r,\nu,\mu_{us}) \, \mathrm{tr} \, \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O \right\} \\ &+ V_B(r,\nu,\mu_{us}) \, \mathrm{tr} \, \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O + O^{\dagger} O \mathbf{r} \cdot g \mathbf{E} \right\} + \dots \end{split}$$

⁷Brambilla et al., Nucl. Phys. B566 (2000) 275

Dealing with the mass renormalon of the potential

 $\bullet\,$ The singlet potential is affected by an r-independent renormalon

$$E(r) = \Lambda_s + V_s(r, \nu, \mu_{us}) + \delta_{us}(r, \nu, \mu_{us}),$$

• May absorb renormalon into residual mass:

$$\begin{aligned} RS(\nu) &= \Lambda_s - \Lambda_s^{\rm rs}(\nu), \quad V_s^{\rm rs}(r,\nu,\mu_{us}) = V_s(r,\nu,\mu_{us}) + \Lambda_s^{\rm rs}(\nu), \\ E(r) &= RS(\nu) + V_s^{\prime s}(r,\nu,\mu_{us}) + \delta_{us}(r,\nu,\mu_{us}), \end{aligned}$$

• Or, to avoid both large logs $\ln(r\nu)$ or an *r*-dependent renormalon term \Rightarrow compute the force, resum the logarithm via $\nu = 1/r$, and integrate⁸

$$\begin{aligned} \overline{F}\left(r,\frac{1}{r}\right) &= \left.\frac{\partial E(r,\nu)}{\partial r}\right|_{\nu=\frac{1}{r}} \\ E(r) &= \int_{\overline{r}}^{r} dr' F\left(r',\frac{1}{r'}\right) + \text{const} \end{aligned}$$

⁸Garcia i Tormo, MPLA 28 133028

Outline		Lattice QCD	Static energy	Singlet free energy	
			000000000000		
Force at	N ³ LO				

 $\bullet\,$ The force at N³LO with $\nu=1/r$

F

$$\begin{split} \left(r,\nu = \frac{1}{r}\right) &= \frac{C_F}{r^2} \alpha_s(1/r) \Bigg[1 \\ &+ \frac{\alpha_s(1/r)}{4\pi} \left(\tilde{a}_1 - 2\beta_0\right) \\ &+ \frac{\alpha_s^2(1/r)}{(4\pi)^2} \left(\tilde{a}_2 - 4\tilde{a}_1\beta_0 - 2\beta_1\right) \\ &+ \frac{\alpha_s^3(1/r)}{(4\pi)^3} \left(\tilde{a}_3 - 6\tilde{a}_2\beta_0 - 4\tilde{a}_1\beta_1 - 2\beta_2 \\ &+ a_3^L \ln \frac{C_A \alpha_s(1/r)}{2} \right) + \mathcal{O}(\alpha_s^4, \alpha_s^4 \ln^2 \alpha_s) \Bigg], \end{split}$$

• The ultra-soft scale gives rise to the $\ln \alpha_s(1/r)$ term⁹

$$\ln\left(\frac{V_o - V_s}{\nu}\right) - \ln\left(r\nu\right) = \ln\left(\frac{C_A}{2} \alpha_s(1/r)\right) = \ln\left(r\mu_{us}\right)$$

⁹Brambilla et al., Phys. Rev. D60 (1999) 091502

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	000000000000	000	00

Leading ultra-soft resummation

$$\begin{split} F(r,\nu = 1/r) &= \frac{C_F}{r^2} \alpha_s(1/r) \Bigg[1 \\ &+ \frac{\alpha_s(1/r)}{4\pi} \Big(\tilde{a}_1 - 2\beta_0 \Big) \\ &+ \frac{\alpha_s^2(1/r)}{(4\pi)^2} \Big(\tilde{a}_2 - 4\tilde{a}_1\beta_0 - 2\beta_1 \Big) \\ &- \frac{\alpha_s^2(1/r)}{(4\pi)^2} \frac{a_3^L}{2\beta_0} \ln \frac{\alpha_s(\mu_{us})}{\alpha_s(1/r)} \\ &+ \frac{\alpha_s^2(1/r)\alpha_s(\mu_{us})}{(4\pi)^3} a_3^L \ln \frac{C_A\alpha_s(1/r)}{2r\mu_{us}} \\ &+ \frac{\alpha_s^3(1/r)}{(4\pi)^3} \Big(\tilde{a}_3 - 6\tilde{a}_2\beta_0 - 4\tilde{a}_1\beta_1 - 2\beta_2 \Big) + \mathcal{O}(\alpha_s^4) \Bigg]. \end{split}$$

• Ultra-soft scale $\mu_{us} = \frac{C_A}{2} \frac{\alpha_s(1/r)}{r}$, recover F^{N^3LO} in limit $\mu_{us} \to 1/r$

Fitting lattice results of the static energy (2014)

Different perturbative orders

- χ^2 /dof reduces for higher orders at shorter distances
- \Rightarrow Weak-coupling suitable for static energy for $r \leq 0.15 \, \text{fm}$
 - At shortest distances little sensitivity to perturbative order

When going to shorter distances

r<0.5r

- Statistical errors increase
- Perturbative errors decrease

Perturbative errors estimated from

- scale variation $\nu = \frac{1}{\sqrt{2r}}$ to $\frac{\sqrt{2}}{r}$
- soft higher order term $\pm \# \frac{\alpha_s^4}{s}$

0.066

0.064

0.062

0.060

r<0.45r

Perturbative uncertainty in the 2019 edition

- Ultra-soft logs are small use three-loop with leading US resummation
- Soft scale variation generates the dominant uncertainty at three loops
- More conservative soft scale variation in 2019 edition: $\nu = \frac{1}{2r}$ to $\frac{2}{r}$
- Nonmonotonic scale dependence is a common effect in EFTs, whenever the error is estimated from scale variation, is minimal for $\nu \approx 1/(\sqrt{2}r)$
- Variation of ultra-soft resummation included in the error budget

Static energy on the lattice: 2014 vs 2019

¹²Bazavov et al., Phys. Rev. D86 (2012) 114031

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	00000000000000	000	00

Wilson loops vs Wilson line correlators in Coulomb gauge

Wilson loops on the lattice

- + Explicit gauge invariance
- Cusp divergences due to corners
- Extra cusp divergences for off-axis separation
- Self-energy divergences due to spatial Wilson lines

Wilson line correlator on the lattice

- Must fix some gauge, i.e. Coulomb gauge
- + No corners, no cusps
- + On- and off-axis separation have same divergence
- + No spatial Wilson lines

Same ground state for both, but Wilson lines technically favorableDistortions at small distance and time for both operators

• The static energy at short distances has percent-level lattice artifacts

• Improved gauge action (Lüscher–Weisz) – reduced symmetry breaking

- Tree-level correction (TLC): $\frac{E^{\text{lat}}(r)}{E^{\text{cont}}(r)}$ for OGE without running coupling
- After tree-level correction smaller, similar pattern of lattice artifacts¹³
- \bullet Impasse: only data with $r/a \geq \sqrt{8}$ omitting $r/a = \sqrt{12}$ are safe
- Way out: estimate the artifacts \Rightarrow nonperturbative correction (NPC)

¹³Bazavov et al, Phys.Rev. D98 (2018) no.5, 054511

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	00000000000000	000	00

Nonperturbative correction of the static energy

- Estimate continuum static energy using fine lattice using $r/a \geq \sqrt{5},$ determine corrections for coarser lattices
- Estimate continuum static energy for $r/a \ge 1$ at N^3LO with leading ultra-soft resummation, marginalizing over Λ_{QCD} in some window
- \Rightarrow Extrapolate the corrections in boosted coupling α_s^{lat} to finer lattices

Outline		Lattice QCD	Static energy	Singlet free energy	
0	00	00	00000000000000	000	00

Impact of the lattice artifacts

Restrict lattice data to r < 0.14 fm ≈ 0.45r₁ (perturbative regime)
Analyze TLC data at r/a ≥ √8 ⇒ artifacts are statistically irrelevant

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	0000000000000000	000	00

Impact of the lattice artifacts

TLC data at r/a < √8 yield α_s smaller by up to 2σ at bad χ²/d.o.f.
NPC data at r/a < √8 are well-described by fit for r/a ≥ √8

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	0000000000000	000	00

Impact of the lattice artifacts

• Combined analysis of lattice data with $a \le 0.06$ fm, i.e., $a/r_1 \le 0.2$

• Statistical and systematic errors reduced, while $\chi^2/d.o.f.$ is unchanged

Outline	Introduction	Lattice QCD	Static energy	Singlet free energy	Summary
			0000000000000		

Systematic errors in the 2019 edition

$\min(r/a)$	$\max(r)$ fm	α_s^{3L}	$\delta^{\rm stat}$	$\delta^{ m pert}_{2014}$	$\delta^{ m pert}_{2019}$	α_s^{2L}
$\sqrt{8}$	0.097	0.1166	0.0007	$+0.0007 \\ -0.0003$	$^{+0.0016}_{-0.0005}$	0.1167
$\sqrt{8}$	0.131	0.1167	0.0005	$^{+0.0008}_{-0.0003}$	$^{+0.0019}_{-0.0006}$	0.1168
1	0.055	0.1164	0.0005	$+0.0003 \\ -0.0001$	$^{+0.0008}_{-0.0003}$	0.1164
1	0.073	0.1166	0.0004	$^{+0.0004}_{-0.0001}$	$^{+0.0010}_{-0.0003}$	0.1166
1	0.098	0.1167	0.0003	$+0.0005 \\ -0.0002$	$^{+0.0012}_{-0.0004}$	0.1167
1	0.131	0.1167	0.0003	$^{+0.0007}_{-0.0003}$	$^{+0.0015}_{-0.0005}$	0.1168

 $\bullet\,$ Must keep $r\lesssim 0.1\,{\rm fm}$ to enable the full soft scale variation

- For soft scale $1/(\sqrt{2}r) \le \nu \le \sqrt{2}/r$ stable against variation of $\max(r)$
- No leading ultra-soft resummation: α_s^{3L} lower by $\sim 70\% \ \delta^{\text{pert}}$
- Include $r/a < \sqrt{8}$ to reduce all perturbative errors
- r_1 scale error: ± 1.7 MeV for Λ_{QCD} , ± 0.0001 for $\alpha_s(M_Z, N_f = 5)$

 $\Lambda_{\rm QCD}^{N_f=3} = 314^{+16}_{-8} \, {\rm MeV}, \qquad \alpha_s(M_Z, N_f=5) = 0.11660^{+0.00110}_{-0.00056}$

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	000000000000	•00	00

T > 0 data in the 2019 edition

- Singlet free energy for T > 0 with much finer lattice spacing¹⁴ (no pion)
- F_{5} defined via Coulomb gauge thermal Wilson line correlator: $\tau=1/T$
- T > 0 effects exponentially suppressed for $\alpha_s/r \gg T$, i.e., $r/a \ll \alpha_s N_\tau$
- Nonconstant T > 0 effects are numerically small for $r/a \leq 0.3 N_{\tau}$ due to compensation between static gluons vs nonstatic gluons and quarks

¹⁴Bazavov et al, Phys.Rev. D98 (2018) no.5, 054511

Outline		Lattice QCD	Static energy	Singlet free energy	
	00	00	000000000000	000	00
α_s from	T > 0				

• Restrict $N_{\tau} = 12$ data to $r/a \leq 2$ or 3, i.e., $r \leq 0.17/T$ or 0.25/T

- Cannot avoid the nonperturbative correction for the lattice artifacts
- Restrict to tiny distances $r \leq 0.03\,\mathrm{fm}$ to reduce the perturbative error

T = 0 vs $T > 0$	
$N_{ au} \max(r/a) \max(r) \operatorname{fm} \left \begin{array}{cc} lpha_s^{3L} & \delta^{\mathrm{stat}} & \delta^{\mathrm{pert}}_{2014} \end{array} \right \delta_{2019}^{\mathrm{pert}}$	α_s^{2L}
$64 \qquad 2 \qquad 0.057 \qquad 0.1165 \qquad 0.0006 \qquad {}^{+0.0003}_{-0.0001} \qquad {}^{+0.0003}_{-0.0001}$	$^{8}_{3}$ 0.1164
64 2 0.078 0.1166 0.0005 +0.0004 +0.001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0	$^{0}_{3}$ 0.1166
64 2 0.096 0.1166 0.0005 +0.0014 +0.001 -0.0002	$^{1}_{03}$ 0.1166
12 2 0.057 0.1165 0.0007 +0.0002 +0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +	$^{6}_{12}$ 0.1164
12 2 0.078 0.1166 0.0006 +0.0003 +0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 +0.0003 +0.003	$^{8}_{13}$ 0.1166
12 2 0.091 0.1167 0.0006 +0.0003 +0.0001 -0.0001 -0.0001 -0.0001 -0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +	$^{9}_{3}$ 0.1167
$64 \qquad 3 \qquad 0.055 \qquad 0.1164 0.0005 {}^{+0.0003}_{-0.0001} {}^{+0.0003}_{-0.0001}$	$^{8}_{03}$ 0.1164
$64 \qquad 3 \qquad 0.073 \qquad 0.1166 \qquad 0.0004 \qquad {}^{+0.0004}_{-0.0001} \qquad {}^{+0.001}_{-0.000}$	$^{0}_{3}$ 0.1166
$64 \qquad 3 \qquad 0.096 \qquad 0.1167 0.0004 {}^{+0.0005}_{-0.0002} {}^{+0.001}_{-0.000}$	$^{2}_{4}$ 0.1167
$64 \qquad 3 \qquad 0.134 \qquad 0.1167 0.0003 {}^{+0.0006}_{-0.0003} {}^{+0.001}_{-0.000}$	$^{4}_{15}$ 0.1168
$12 \qquad 3 \qquad 0.055 \qquad 0.1167 0.0005 {}^{+0.0002}_{-0.0001} {}^{+0.000}_{-0.0001}$	$^{6}_{12}$ 0.1167
$12 \qquad 3 \qquad 0.073 \qquad 0.1168 0.0005 {}^{+0.0003}_{-0.0001} {}^{+0.0003}_{-0.0001}$	$^{8}_{03}$ 0.1168
$12 \qquad 3 \qquad 0.096 \qquad 0.1168 0.0005 {}^{+0.0003}_{-0.0001} {}^{+0.000}_{-0.0001}$	$^{9}_{3}$ 0.1168
$12 \qquad 3 \qquad 0.133 \qquad 0.1168 0.0004 {}^{+0.0005}_{-0.0002} {}^{+0.001}_{-0.000}$	$^{2}_{4}$ 0.1169

Complete agreement between α_s from T = 0 or T > 0

Outline		Lattice QCD	Static energy	Singlet free energy	Summary
	00	00	000000000000	000	•0
Summary	1				

• We determine the strong coupling constant α_s from the static energy using 6 lattice spacings with more conservative perturbative errors and from the singlet free energy using 15 lattice spacings (and two N_{τ})

Static energy	2014	2019
$\alpha_s(m_Z, N_f = 5)$	$0.1166^{+0.0012}_{-0.0008}$	$0.11660\substack{+0.00110\\-0.00056}$
$\Lambda_{\rm QCD}(N_f=3)$	$315^{+18}_{-12} { m MeV}$	$314^{+16}_{-08}~{ m MeV}$
Soft scale	$\mu=1/\max(r)\gtrsim 2/r_1$	$\mu=1/\max(r)\gtrsim4/r_1$
Singlet free energy	past	2019
Singlet free energy $\alpha_s(m_Z, N_f = 5)$	past NA	$\frac{2019}{0.11638^{+0.00095}_{-0.00087}}$
Singlet free energy $\alpha_s(m_Z, N_f = 5)$ $\Lambda_{\rm QCD}(N_f = 3)$	past NA NA	$\begin{array}{r} 2019 \\ 0.11638 \substack{+0.00095 \\ -0.00087 \\ 311 \substack{+14 \\ -12 } \mathrm{MeV} \end{array}$

Running of α_s at low scales

- 2014 HPQCD quarkonium correlators¹⁵
- 2019 quarkonium correlators¹⁶
- 2014 TUMQCD static energy¹⁷
- 2019 static energy and singlet free energy¹⁸

 ¹⁵Chakraborty et al., Phys.Rev. D91 (2015) no.5, 054508 McNeile et al., Phys.Rev. D82 (2010) 034512 Allison et al., Phys.Rev. D78 (2008) 054513
 ¹⁶PP, JHW: Phys.Rev. D100 (2019) 3, 034519
 ¹⁷Bazavov et al., Phys. Rev. D90 (2014) 7, 074038
 ¹⁸Bazavov et al., arXiv:1907.11747

Thank you!

Coefficients of the force – color factors and beta function

- Color factors: $C_F = \frac{N_c^2 1}{2N_c}, \ C_A = N_c, \ T_F = \frac{1}{2}$
- Beta function:

$$\frac{d\,\alpha_s(\nu)}{d\ln\nu} = \alpha_s\beta(\alpha_s) = -\frac{\alpha_s^2}{2\pi}\sum_{n=0}^{\infty}\left(\frac{\alpha_s}{4\pi}\right)^n\beta_n = -2\alpha_s\left[\beta_0\frac{\alpha_s}{4\pi} + \beta_1\left(\frac{\alpha_s}{4\pi}\right)^2 + \cdots\right]$$

• Relevant coefficients explicitly contributing to the force:

$$\begin{aligned} \beta_0 &= \frac{11}{3} C_A - \frac{4}{3} T_F N_f, \\ \beta_1 &= \frac{34}{3} C_A^2 - \frac{20}{3} C_A N_f T_F - 4 C_F N_f T_F, \\ \beta_2 &= \frac{2857}{54} C_A^3 - \left(\frac{1415}{27} C_A^2 + \frac{205}{9} C_A C_F - 2 C_F^2\right) N_f T_F + \left(\frac{158}{27} C_A + \frac{44}{9} C_F\right) N_f^2 T_F^2 \end{aligned}$$

• Coefficients \tilde{a}_i :

$$\begin{split} \tilde{a}_{1} &= a_{1} + 2\gamma_{E}\beta_{0}, \\ \tilde{a}_{2} &= a_{2} + \left(\frac{\pi^{2}}{3} + 4\gamma_{E}^{2}\right)\beta_{0}^{2} + \gamma_{E}\left(4a_{1}\beta_{0} + 2\beta_{1}\right), \\ \tilde{a}_{3} &= a_{3} + \left(8\gamma_{E}^{3} + 2\gamma_{E}\pi^{2} + 16\zeta(3)\right)\beta_{0}^{3} + 2\gamma_{E}\beta_{2} \\ &+ \left[\left(12\gamma_{E}^{2} + \pi^{2}\right)\beta_{0}^{2} + 4\gamma_{E}\beta_{1}\right]a_{1} + \left[6a_{2}\gamma_{E} + \frac{5}{2}\left(4\gamma_{E}^{2} + \frac{\pi^{2}}{3}\right)\beta_{1}\right]\beta_{0} \end{split}$$

• Coefficients a_i :

$$\begin{aligned} a_1 &= \frac{31}{9} C_A - \frac{20}{9} T_F N_f, \\ a_2 &= \left(\frac{4343}{162} + 4\pi^2 - \frac{\pi^4}{4} + \frac{22}{3} \zeta(3) \right) C_A^2 - \left(\frac{1798}{81} + \frac{56}{3} \zeta(3) \right) C_A T_F N_f \\ &- \left(\frac{55}{3} - 16\zeta(3) \right) C_F T_F N_f + \left(\frac{20}{9} T_F N_f \right)^2 \end{aligned}$$

0....

• Coefficient
$$a_3$$
:
 $a_3 = a_3^{(3)} N_f^2 + a_3^{(2)} N_f^2 + a_3^{(1)} N_f + a_3^{(0)},$
 $a_3^{(3)} = -\left(\frac{20}{9}\right)^3 T_F^3,$
 $a_3^{(2)} = \left(\frac{12541}{243} + \frac{368}{3}\zeta(3) + \frac{64\pi^4}{135}\right) C_A T_F^2 + \left(\frac{14002}{81} - \frac{416}{3}\zeta(3)\right) C_F T_F^2,$
 $a_3^{(1)} = (-709.717) C_A^2 T_F + \left(-\frac{71281}{162} + 264\zeta(3) + 80\zeta(5)\right) C_A C_F T_F$
 $+ \left(\frac{286}{9} + \frac{296}{3}\zeta(3) - 160\zeta(5)\right) C_F^2 T_F + (-56.83(1)) \frac{18 - 6N_c^2 + N_c^4}{96N_c^2},$
 $a_3^{(0)} = 502.24(1)C_A^3 - 136.39(12) \frac{N_c^3 + 6N_c}{48} + \frac{8}{3}\pi^2 C_A^3 \left(-\frac{5}{3} + 2\gamma_E + 2\log 2\right)$
• Coefficient a_5^L : $a_3^L = \frac{16\pi^2}{2} C_A^3$

- Combine gauge ensembles with different light sea quark mass
- \Rightarrow No statistically significant quark mass effects up to $r\approx 0.5r_1$
 - Fine gauge ensembles with fully suppressed topological tunneling
- ⇒ No statistically significant difference between static energy in different topological sectors up to $r \approx 0.5r_1$ observed¹⁹

