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Some References
A nice review of the holographic principle is https://arxiv.org/pdf/hep-th/0203101.
The original insight is due to ’t Hooft.
The original AdS/CFT paper by Maldacena is https://arxiv.org/pdf/hep-th/

9711200.pdf (most cited paper in the history of physics). Seminal papers
by Witten: https://arxiv.org/pdf/hep-th/9802150.pdf and Gubser, Klebanov and
Polyakov: https://arxiv.org/pdf/hep-th/9802109.pdf.
The subject of holographic entanglement entropy started with the seminal
papers of Ryu and Takayanagi https://arxiv.org/pdf/hep-th/0603001 and https:

//arxiv.org/pdf/hep-th/0605073, where they presented their prescription. The
covariant version, due to Hubeny, Rangamani and Takayanagi was proposed
in https://arxiv.org/pdf/0705.0016.
Other relevant papers on the subject including various generalizations are:
https://arxiv.org/pdf/1310.5713.pdf, https://arxiv.org/pdf/1101.5813.pdf, https://arxiv.

org/pdf/1307.2892, https://arxiv.org/pdf/1304.4926, https://arxiv.org/pdf/1102.0440. There
are many more...
Various reviews on the subject of holographic entanglement entropy can be
found in https://arxiv.org/pdf/0905.0932, https://arxiv.org/pdf/1609.01287.pdf, http://

www2.yukawa.kyoto-u.ac.jp/~tadashi.takayanagi/CERNEE.pdf, https://arxiv.org/pdf/1609.00026.

pdf

The derivation of the linearized gravity equations from the entanglement
first law is from https://arxiv.org/pdf/1312.7856.pdf.
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The holographic principle and AdS/CFT

Black hole entropy and holographic principle

Black holes are thermodynamic objects. They satisfy the laws of ther-
modynamics! Their entropy is proportional to their area according to
the famous Bekenstein-Hawking formula:

SBH = Area(horizon)
4G

By increasing the amount of stuff within a region A we can increase
its entropy. But, if we put enough stuff, it will collapse forming a
black hole! Hence, the entropy allowed within a region A is bounded
by

S(A) ≤ Area(A)
4G

The idea that all things happening within a volume A should be de-
scribable in terms of things happening at its boundary ∂A is called
the holographic principle.
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The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence.

This is a full physical equivalence
of pairs of theories which are very different at first sight. On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]
We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence. This is a full physical equivalence
of pairs of theories which are very different at first sight.

On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]
We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence. This is a full physical equivalence
of pairs of theories which are very different at first sight. On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]
We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence. This is a full physical equivalence
of pairs of theories which are very different at first sight. On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]
We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence. This is a full physical equivalence
of pairs of theories which are very different at first sight. On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]

We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

AdS/CFT correspondence

The holographic principle is explicitly (and spectacularly) realized in
the AdS/CFT correspondence. This is a full physical equivalence
of pairs of theories which are very different at first sight. On the
one hand, quantum gravity theories (String Theories); on the other,
certain conformal field theories (without gravity) living in one spatial
dimension less.

AdS quantum gravity in (d+ 1) dimensions = CFT in d dimensions

When the CFT is in a strongly-coupled regime and the number of
components of the fields is sufficiently large, the equivalent quantum
gravity theory is in the regime where stringy and quantum effects are
small and physics is described by (semi)classical Einstein gravity:

Igrav. = 1
16πG

∫
dd+1x

√
−g
[
d(d− 1)
L2 +R+ . . .

]
We can use the tools of GR to learn quantum things!

5 / 24



The holographic principle and AdS/CFT

States ⇔ geometries

The correspondence between physical quantities at both sides of the
duality is called the “holographic dictionary”.

In particular, it tells us
that states in the CFTd correspond to geometries in the gravity side
(solutions to Einstein equations)

Vacuum state in CFTd ⇔ Empty AdSd+1

ds2 = L2
?

z2

[
−dt2 + d~x2

d−1 + dz2]
Thermal state at temperature T in CFTd⇔ Schwarzschild-AdSd+1
black hole

ds2 = L2
?

z2

[
−f(z)dt2 + d~x2

d−1 + dz2

f(z)

]
, f(z) ≡ 1− zd

zd+

with temperature T = d/(4πz+)

(For today, we mostly restrict our discussion to the vacuum state.)

6 / 24



The holographic principle and AdS/CFT

States ⇔ geometries

The correspondence between physical quantities at both sides of the
duality is called the “holographic dictionary”. In particular, it tells us
that states in the CFTd correspond to geometries in the gravity side
(solutions to Einstein equations)

Vacuum state in CFTd ⇔ Empty AdSd+1

ds2 = L2
?

z2

[
−dt2 + d~x2

d−1 + dz2]
Thermal state at temperature T in CFTd⇔ Schwarzschild-AdSd+1
black hole

ds2 = L2
?

z2

[
−f(z)dt2 + d~x2

d−1 + dz2

f(z)

]
, f(z) ≡ 1− zd

zd+

with temperature T = d/(4πz+)

(For today, we mostly restrict our discussion to the vacuum state.)

6 / 24



The holographic principle and AdS/CFT

States ⇔ geometries

The correspondence between physical quantities at both sides of the
duality is called the “holographic dictionary”. In particular, it tells us
that states in the CFTd correspond to geometries in the gravity side
(solutions to Einstein equations)

Vacuum state in CFTd ⇔ Empty AdSd+1

ds2 = L2
?

z2

[
−dt2 + d~x2

d−1 + dz2]

Thermal state at temperature T in CFTd⇔ Schwarzschild-AdSd+1
black hole

ds2 = L2
?

z2

[
−f(z)dt2 + d~x2

d−1 + dz2

f(z)

]
, f(z) ≡ 1− zd

zd+

with temperature T = d/(4πz+)

(For today, we mostly restrict our discussion to the vacuum state.)

6 / 24



The holographic principle and AdS/CFT

States ⇔ geometries

The correspondence between physical quantities at both sides of the
duality is called the “holographic dictionary”. In particular, it tells us
that states in the CFTd correspond to geometries in the gravity side
(solutions to Einstein equations)

Vacuum state in CFTd ⇔ Empty AdSd+1

ds2 = L2
?

z2

[
−dt2 + d~x2

d−1 + dz2]
Thermal state at temperature T in CFTd⇔ Schwarzschild-AdSd+1
black hole

ds2 = L2
?

z2

[
−f(z)dt2 + d~x2

d−1 + dz2

f(z)

]
, f(z) ≡ 1− zd

zd+

with temperature T = d/(4πz+)

(For today, we mostly restrict our discussion to the vacuum state.)

6 / 24



The holographic principle and AdS/CFT

States ⇔ geometries

The correspondence between physical quantities at both sides of the
duality is called the “holographic dictionary”. In particular, it tells us
that states in the CFTd correspond to geometries in the gravity side
(solutions to Einstein equations)

Vacuum state in CFTd ⇔ Empty AdSd+1

ds2 = L2
?

z2

[
−dt2 + d~x2

d−1 + dz2]
Thermal state at temperature T in CFTd⇔ Schwarzschild-AdSd+1
black hole

ds2 = L2
?

z2

[
−f(z)dt2 + d~x2

d−1 + dz2

f(z)

]
, f(z) ≡ 1− zd

zd+

with temperature T = d/(4πz+)

(For today, we mostly restrict our discussion to the vacuum state.)

6 / 24



The holographic principle and AdS/CFT

States ⇔ geometries
In Poincaré coordinates

ds2 =
L2
?

z2

[
−dt2 + d~x2

d−1 + dz2
]

“the CFTd lives” in slices of constant holographic coordinate z.

Different values of
z correspond to different energies in the CFTd.

The region z → 0 (or “boundary region”) corresponds to high-energies. Note
that all asymptotically AdSd+1 geometries look alike in that regime, just like
all states in a QFT look like the vacuum at sufficiently high energies.
Greater values of z probe the “bulk region” and corresponds to low energies.
Features which distinguish different states become apparent in the geometry
(e.g., by the presence of a horizon).
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The Ryu-Takayanagi prescription

The Ryu-Takayanagi
prescription
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The Ryu-Takayanagi prescription

Holographic entanglement entropy

One may wonder: is there a region in AdSd+1 which encodes the
information corresponding to a given region A in the CFTd?

This question was partially answered by Ryu and Takayanagi
with their sensational proposal for the computation of entangle-
ment entropy of CFTs with a holographic dual...
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The Ryu-Takayanagi prescription

Holographic entanglement entropy
The Ryu-Takayanagi prescription tells us that the EE for a region A in the
CFT [dual to Einstein (super)gravity in the bulk] can be computed as

SHEE(A) = min
V∼A

[
Area(V )

4G

]
We need to minimize amongst all bulk surfaces V whose boundary coincides
with the one of A

[the exact condition is that A and V are homologous, i.e., ∃ some bulk
region r such that ∂r = A ∪ V ].

Nice new entry in the holographic dictionary! Very powerful computation-
ally. Remarkably similar to Bekenstein-Hawking formula for black hole
entropy!
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The Ryu-Takayanagi prescription

Holographic entanglement entropy

The RT prescription was firstly argued to hold based on
heuristic arguments. Doubts on the general validity of
those were raised, including an attempted and failed gen-
eral proof...

However, the formula passed numerous tests, including re-
producing all expected properties of EE such as SSA, struc-
ture of universal terms, etc. in various dimensions.
Using the AdS/CFT dictionary, the replica trick and the
interpretation of EE as the n→ 1 limit of Rényi entropies,
Lewkowycz and Maldacena finally rigorously proved it.
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The Ryu-Takayanagi prescription

Inequalities
Strong subadditivity can be seen to hold rather easily.

For instance, for a CFT2,
the RT surfaces for intervals are simply semicircles, and the EE is proportional to
their length so:

SEE(AB) + SEE(BC) ≥ SEE(ABC) + SEE(B)
Holographic entanglement entropy satisfies an additional property called “monogamy”,
not satisfied by general CFTs: I3(A,B,C) ≡ I(A,B) + I(A,C)− I(A,BC) ≤ 0

SEE(AB) + SEE(BC) + SEE(AC) ≥ SEE(A) + SEE(B) + SEE(C) + SEE(ABC)
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Corrections to the RT formula

Higher-curvature corrections
When the gravitational action contains higher-curvature (“stringy”) corrections to the Einstein-
Hilbert action, the RT gets modified (similarly to Bekenstein-Hawking’s formula for black
holes).

f(R) gravity: L = d(d−1)
L2 + R + f(R)

S
f(R)
EE =

A(V )
4G

+
1

4G

∫
V

dd−1
y
√
hf
′(R)

Quadratic gravity: L = d(d−1)
L2 + R + L2

[
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
]

S
Riem2
EE =

A(V )
4G

+
L2

4G

∫
V

dd−1
y
√
h

[
2α1R + α2(Raa −

1
2
K
a
Ka) + 2α3

(
R
ab
ab −KaijK

aij
)]

Lovelock gravity: L = d(d−1)
L2 + R +

∑b d+1
2 c

n=2
λnL

2(n−1)X2n(R), where bxc integer

part of x and the order-n invariants: X2n(R) ≡ 1
2n δ

µ1µ2···µ2n−1µ2n
ν1ν2···ν2n−1ν2n R

ν1ν2
µ1µ2 · · ·R

ν2n−1
µ2n−1µ2n .

S
Lovelock
EE =

A(V )
4G

+

b d+1
2 c∑

n=2

nλnL
2(n−1)

4G

∫
V

dd−1
y
√
hX2(n−1)(R)

General formula exists for arbitrary theories, but there are some obstructions to its application
beyond the present cases.
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2α1R + α2(Raa −
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K
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Ka) + 2α3
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R
ab
ab −KaijK

aij
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Lovelock gravity: L = d(d−1)
L2 + R +

∑b d+1
2 c

n=2
λnL

2(n−1)X2n(R), where bxc integer

part of x and the order-n invariants: X2n(R) ≡ 1
2n δ

µ1µ2···µ2n−1µ2n
ν1ν2···ν2n−1ν2n R

ν1ν2
µ1µ2 · · ·R

ν2n−1
µ2n−1µ2n .
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EE =

A(V )
4G

+

b d+1
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nλnL
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V
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y
√
hX2(n−1)(R)
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Corrections to the RT formula

Quantum corrections

The RT expression is a “tree-level” result, but there are quantum
corrections, which are subleading in 1/G. The expression including
the leading one reads:

SEE(A) = min
V∼A

[
Area(V )

4G

]
+ Sbulk

EE (Ab) +O(G)

The leading correction (order zero in 1/G) comes from the entangle-
ment entropy of bulk modes subject to the bipartitioning across the
RT surface.
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Some explicit calculations

Interval in a CFT2

In Poincaré coordinates, ds2
AdS3

= L2
?/z

2[−dt2 + dz2 + dx2], we consider the EE
of an interval x ∈ [−`/2, `/2] in a time slice.

Let us parametrize the bulk surfaces
as z = Z(x). Then, the induced metric reads

ds2
h =

L2
?

Z(x)2 [1 + Z′(x)2]dx2 ⇒
√
h =

L?

Z(x)

√
1 + Z′(x)2

The RT functional becomes

SEE =
Area(V )

4G
=
L?

4G

∫
dx
Z(x)

√
1 + Z′(x)2

In order to minimize it, we need to find a solution to the Euler-Lagrange equations
corresponding to the above “Lagrangian” and such that Z(x → `/2) → 0. The
equations read 1 +Z′(x)2 +Z(x)Z′′(x) = 0. The solution we are looking for reads
Z(x) =

√
(`/2)2 − x2. Plugging back in the RT functional, we have

SEE =
L?

4G
× 2×

∫ `/2−δ2/`

0

`/2
(`/2)2 − x2 dx =

L?

2G
log(`/δ) +O(δ0)

where we introduced a UV cutoff at Z = δ. This is exactly the result expected
for a CFT2 with central charge c = 3L?/(2G). The value of c for holographic
Einstein gravity can be computed via alternative methods and perfectly matches
this result!
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Some explicit calculations

Spheres in a CFTd

We write now the AdSd+1 metric as: ds2
AdSd+1

= L2
?

z2 [−dt2 + dz2 +
dr2 + r2dΩ2

d−2].

Consider now our entangling surface to be a sphere
Sd−2 of radius r = ` centered at r = 0. We parametrize the RT surface
as z = Z(r). The induced metric reads then ds2

h = L2
?

Z2 [(1 +Z ′2)dr2 +
r2dΩ2

d−2]. Then, the RT functional reads

SEE = Ld−1
? π(d−1)/2

2GΓ
[
d−1

2
] ∫ `

0
dr r

d−2

Zd−1

√
1 + Z ′2

where I already integrated over the angular directions. The Euler-
Lagrange equation that we need to solve in order to find the minimal
surface reads now:

rZZ ′′ + (d− 2)ZZ ′(1 + Z ′2) + (d− 1)r(1 + Z ′2) = 0
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Some explicit calculations

Spheres in a CFTd

The solution for this differential equation satisfying the boundary con-
dition Z(`) = 0 is Z =

√
`2 − r2.
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Spheres in a CFTd

Going back to the RT functional we have

SEE = Ld−1
? π(d−1)/2

2GΓ
[
d−1

2
] ∫ 1

δ/`

dy (1− y2)(d−3)/2

yd−1

= π(d−1)/2Ld−1
?

2(d− 2)GΓ[ d−1
2 ]

(
`

δ

)d−2
+ · · ·+

{
(−) d−2

2 4a? log
(
`
δ

)
for even d ,

(−) d−1
2 2πa? for odd d .

where

a? = π
d−2

2

8Γ
[
d
2
] Ld−1

?

G
.

This is the expression expected for a spherical entangling surface in
a CFTd. The coefficient a? can also be computed using alternative
methods and it exactly matches the one obtained here.
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Some explicit calculations

Corners in a CFT3

What about a corner region?

The holographic result reads

SEE = L2
?

2G
H

δ
− aE(Ω) log

(
H

δ

)
+O(δ0) ,

where the holographic corner function is given by

aE(Ω) = L2
?

2G

∫ ∞
0

dy
[

1−

√
1 + h0(Ω)2(1 + y2)
2 + h0(Ω)2(1 + y2)

]
,

Ω(h0) =
∫ h0

0
dh 2h2

√
1 + h2

0√
1 + h2

√
(h2

0 − h2)(h2
0 + (1 + h2

0)h2)
.
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Gravity from entanglement

Gravity from entanglement
An interesting application of the RT formula is the possibility to re-
late/derive Einstein equations to/from a fundamental quantum prin-
ciple.

The derivation is a bit technical but I will try to highlight some
of the key steps.

First, recall the first law of EE

δSEE(A) = δ 〈HA〉

This holds for any CFT and for any region A.

The modular Hamiltonian is a complicated and non-local object
in general. However, for a general CFTd with stress tensor Tab,
for a spherical ball B(R, ~x0) of radius R centered at ~x0, it has
the following useful representation

〈Hball〉 = 2π
∫
B(R,~x0)

dd−1x

[
R2 − |~x− ~x0|2

2R

]
〈Ttt〉
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Gravity from entanglement

Gravity from entanglement

Holographically, entanglement entropy is computed via the RT
prescription, and the surface corresponding to a ball-shaped re-
gion B is given by B̃ = {t = t0, |xi − xi0|2 + z2 = R2}. We have
then for holographic theories

δSEE(B) = δ 〈HB〉
AdS/CFT=⇒ δA(B̃)

4G = δ 〈Hgrav.
B 〉
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Gravity from entanglement

On the other hand, using the CHM map, we know that the EE
for a ball-shaped region can be obtained as the thermal entropy
of the CFT in hyperbolic space, SEE(B) = Stherm.(Hd−1).

Holographically, this means that the EE can be obtained from
the Bekenstein-Hawking entropy of a hyperbolic black hole.

δA(B̃)
4G = δ 〈Hgrav.

B 〉 CHM⇐⇒ δSBH = δ 〈Hgrav.
B 〉
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Gravity from entanglement

Gravity from entanglement

Now, a result due to Iyer and Wald shows that the linearized
Einstein equations imply the last equality.

For this to work, it is
crucial that 〈Hgrav.

B 〉 can be interpreted as the canonical energy
associated to the Killing vector which generates the BH horizon
(in other words, it is crucial that we chose a ball-shaped region).
So we have

δ

[
Rµν −

1
2gµνR− 8πGTµν

]
= 0 IW=⇒ δSBH = δ 〈Hgrav.

B 〉

CHM+AdS/CFT⇐⇒ δSEE(B) = δ 〈HB〉

Namely, the linearized Einstein equations imply the quantum
first law of entanglement entropy for ball-shaped regions.
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Gravity from entanglement

Gravity from entanglement

Interestingly, the opposite implication also holds!

δSEE(B) = δ 〈HB〉 =⇒ δ

[
Rµν −

1
2gµνR− 8πGTµν

]
= 0

The proof relies on the existence of certain (d− 1) form χ whose
integrals over B and B̃ are related to SBH and 〈Hgrav.

B 〉 respec-
tively and which is such that dχ is proportional to the linearized
equations.

The proof extends to general holographic higher-curvature grav-
ities.

Classical (linearized) gravitational dynamics in AdS spaces fol-
lows from a fundamental quantum principle!
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Gravity from entanglement

Summary

The holographic principle suggests that all things happening within a volume
A should be describable in terms of things happening at its boundary.

The
AdS/CFT is, in particular, a precise realization of this principle.
Physical quantities in the boundary theory have their counterpart in the
gravity theory (holographic dictionary). In particular, states in the CFT
correspond to spacetime geometries in the bulk.
For strongly coupled and large-N holographic CFTs, the dual becomes Ein-
stein gravity coupled to other fields.
The Ryu-Takayanagi prescription allows us to compute EE for holographic
CFTs (in that regime) from the area of extremal surfaces in AdS. It is now
a rigorous entry of the dictionary with tons of applications. It is modified
by additional terms when stringy and quantum corrections are considered.ă
Linearized gravitational dynamics in AdS spaces follows from the first law
of EE through the Ryu-Takayanagi formula. This is an explicit illustration
of the "It from qubit" idea...
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You can reach me at:
pablo.bueno@cab.cnea.gov.ar
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