Detecting Dark Matter around Black Holes with Gravitational Waves

Bradley J Kavanagh Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)

#SADM3 - 4th December 2020

kavanagh@ifca.unican.es

@BradleyKavanagh

GW probes of DM

Current Interferometers

GW probes of DM

Intermediate Mass Ratio Inspiral (IMRI)

Stellar mass compact object (NS/BH) inspirals towards intermediate mass black hole (IMBH)

 $M_{\rm IMBH} \sim 10^3 - 10^5 \, M_{\odot}$

GW emission causes long, slow inspiral:

$$\dot{E}_{\rm GW} \approx \frac{32G^4}{5c^5} \frac{M_{\rm IMBH}^3 M_{\rm NS}^2}{r^5} \propto (f_{\rm GW})^{10/3}$$

LISA: GWs in Space

LISA should detect ~ 3 - 10 IMRIs per year [1711.00483]

Dark Matter 'spikes'

Depending on the formation mechanism of the IMBH, expect an over-density of DM:

$$\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$$

IMB

For BH forming in an NFW halo, from adiabatic growth expect:

 $\gamma_{\rm sp} = 7/3 \approx 2.333$

Typical density normalisation:

 $\rho_{\rm sp} \sim 200 \, M_\odot \, {\rm pc}^{-3}$

Density can reach $\rho \sim 10^{24} M_{\odot} \,\mathrm{pc}^{-3}$ (~10²⁴ times larger than local density)

DM

Dynamical Friction

IMBH

'Dressed' IMRI

'Dressed' IMRI

'De-phasing' signal

[See talk by Marco Chianese about Edwards, Chianese, **BJK**, Nissanke & Weniger, <u>Phys. Rev. Lett. 124, 161101, 1905.04686</u>]

Energy Budget

Q: How much energy is *available* for dynamical friction?

 Δr

A: Binding energy of DM $\Delta U_{\rm DM}$ over radius Δr

[BJK, Nichols, Gaggero, Bertone, 2002.12811]

Energy Budget

Q: How much energy is *available* for dynamical friction?

Evolve the system by fixing the dynamical friction force to extract *all* binding energy from a shell at a given radius:

$$\dot{E}_{\rm DF} = \dot{r} \, \frac{\mathrm{d}U_{\rm DM}}{\mathrm{d}r}$$

[BJK, Nichols, Gaggero, Bertone, 2002.12811]

Follow semi-analytically the phase space distribution of DM:

$$f = \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{r} \,\mathrm{d}^3 \mathbf{v}} \equiv f(\mathcal{E})$$
$$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$$

Each particle receives a 'kick' through gravitational scattering

 $\mathcal{E} \to \mathcal{E} + \Delta \mathcal{E}$

Reconstruct density from distribution function:

$$\rho(r) = \int \mathrm{d}^3 \mathbf{v} f(\mathcal{E})$$

Compact object scatters with all DM particles within 'torus' of influence over one orbit

Assuming everything evolves slowly compared to the orbital period:

$$\Delta f(\mathcal{E}) = -p_{\mathcal{E}} f(\mathcal{E}) + \int \left(\frac{\mathcal{E}}{\mathcal{E} - \Delta \mathcal{E}}\right)^{5/2} f(\mathcal{E} - \Delta \mathcal{E}) P_{\mathcal{E} - \Delta \mathcal{E}}(\Delta \mathcal{E}) \, \mathrm{d}\Delta \mathcal{E}$$

$$P_{\mathcal{E}}(\Delta \mathcal{E})~$$
 - probability for a particle with energy $\,\mathcal{E}\,$ to scatter and receive a 'kick' $\Delta \mathcal{E}\,$

$$p_{\mathcal{E}} = \int P_{\mathcal{E}}(\Delta \mathcal{E}) \,\mathrm{d}\Delta \mathcal{E}$$

- total probability for a particle with energy ${\mathcal E}$ to scatter

[Code available online: <u>github.com/bradkav/HaloFeedback</u>]

Assuming everything evolves slowly compared to the orbital period:

Particles scattering from $\mathcal{E} - \Delta \mathcal{E} \rightarrow \mathcal{E}$

 $P_{\mathcal{E}}(\Delta \mathcal{E})~$ - probability for a particle with energy $\,\mathcal{E}~$ to scatter and receive a 'kick' $\Delta \mathcal{E}~$

$$p_{\mathcal{E}} = \int P_{\mathcal{E}}(\Delta \mathcal{E}) \,\mathrm{d}\Delta \mathcal{E}$$

- total probability for a particle with energy ${\mathcal E}$ to scatter

[Code available online: github.com/bradkav/HaloFeedback]

Assuming everything evolves slowly compared to the orbital period:

Particles scattering from $\mathcal{E} - \Delta \mathcal{E} \rightarrow \mathcal{E}$

 $P_{\mathcal{E}}(\Delta \mathcal{E})~$ - probability for a particle with energy $\,\mathcal{E}~$ to scatter and receive a 'kick' $\Delta \mathcal{E}~$

$$p_{\mathcal{E}} = \int P_{\mathcal{E}}(\Delta \mathcal{E}) \,\mathrm{d}\Delta \mathcal{E}$$

- total probability for a particle with energy ${\mathcal E}$ to scatter

[Code available online: github.com/bradkav/HaloFeedback]

Full evolution of the system

Subtlety: dynamical friction only cares about 'slow-moving' particles

Full evolution of the system

Subtlety: dynamical friction only cares about 'slow-moving' particles

 $\Delta N_{\rm cycles}({\rm static}) \approx 10^6 \rightarrow \Delta N_{\rm cycles}({\rm dynamic}) \approx 10^4$

 $\Delta t_{\rm merge} \approx 1 \,{\rm yr} \rightarrow \Delta t_{\rm merge} \approx 12 \,{\rm days}$

Plans for the future

Improved modelling

- Injection and evolution of angular momentum in the DM halo
- More general orbital parameters (eccentricities etc.)
- Post-Newtonian corrections
- N-body approaches [<u>AMUSE</u>?]

Detection methods

- Producing template banks for LISA searches
- Incoherent searches for continuous GWs
- 'General' de-phased waveform templates [2004.06729]

Detection prospects

- How many IMRI systems form?
- How many systems have a (surviving) spike?
- Prospects for detection and parameter reconstruction (DM density)

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Assume we observe a GW signal from our benchmark 'dressed' IMRI, which has $~\mathcal{M}=15.846\,M_{\odot}$.

Compare phase evolution with different vacuum binaries:

Parameter sensitivity

 $\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$

Assume we observe a GW signal from our benchmark 'dressed' IMRI, which has $ho_{
m sp}=200\,M_\odot\,{
m pc}^3$ and $\gamma_{
m sp}=7/3pprox2.333$.

Compare phase evolution with different dressed binaries:

Conclusions

Exciting prospects for detecting Dark Matter through GW 'de-phasing' [Edwards, Chianese, **BJK**, Nissanke & Weniger, <u>Phys. Rev. Lett. 124, 161101, 1905.04686</u>]

'Dressed' IMRI systems need to be modelled carefully [**BJK**, Nichols, Gaggero, Bertone, <u>2002.12811</u>]

Next: develop search strategies and look at parameter estimation

[Ongoing work with all of the above, and especially Adam Coogan]

Conclusions

Exciting prospects for detecting Dark Matter through GW 'de-phasing' [Edwards, Chianese, **BJK**, Nissanke & Weniger, Phys. Rev. Lett. 124, 161101, 1905.04686]

'Dressed' IMRI systems need to be modelled carefully [**BJK**, Nichols, Gaggero, Bertone, <u>2002.12811</u>]

Next: develop search strategies and look at parameter estimation

[Ongoing work with all of the above, and especially Adam Coogan]

Thank you!

Spectrograms: $m_{\text{IMBH}} = 10^4 M_{\odot}$

As we increase the IMBH mass, the correction from having a dynamic DM halo decreases (but can still be very relevant)

NB: $7/3 \approx 2.333$

 $\gamma_{
m sp}$

 $\rho_{\rm DM}(r) = \rho_{\rm sp}\left(\frac{r_{\rm sp}}{r}\right)$

Nature of Dark Matter

Red regions would be ruled out by observation of a DM spike! [1906.11845]

[See also Bertone, Coogan, Gaggero, **BJK** & Weniger, <u>1905.01238</u>]

Parameter Reconstruction

FIG. 4: The relative errors of the parameters in the phase $\tilde{\Phi}(f)$ versus (a) the central BH mass $M_{\rm BH}$ and (b) the stellar mass object mass μ for S/N = 10 and $\alpha = 7/3$. For this plot, $\rho_{\rm sp}$ and $r_{\rm sp}$ are taken from the table [I]. The other parameter is fixed to be $\mu = 1M_{\odot}$ in the left and $M_{\rm BH} = 10^3 M_{\odot}$ in the right, respectively. Note that the both axes are in the logarithmic scales. The solid line, the dashed line, the dashed-dotted line correspond to $\Delta \alpha / \alpha$, $\Delta c_{\varepsilon} / c_{\varepsilon}$, $\Delta M_c / M_c$ respectively.

N-body simulations

Allows us to check assumptions and fix normalisation of DF force ($In\Lambda$), but can't simulate the whole 5 year inspiral!

N-body results

Dependence of dynamical friction force on mass and separation matches expectations

Dynamical friction traces local DM density (to better than 1%)

Drop off in DF force at small separations due to softening of simulations

N-body results

IMBH

 $b_{\rm max}$

 $q r_2$

NS

$q \equiv m_{\rm NS}/m_{\rm IMBH} \ll 1$

$$b_{\rm max} = \sqrt{q} \, r_2 \sim 3\% \, r_2$$

26

- Spherical symmetry and isotropy of the DM halo
- DM particles only scatter within an impact parameter

$$b < b_{\rm max} = \Lambda \times G_N M_{\rm NS} / v_{\rm NS}^2$$

• DM distribution is 'locally' uniform

$$b_{\rm max} \ll r_0$$

- Halo 'relaxation' is instantaneous
- Orbital properties evolve slowly compared to the orbital period

Distribution function

Self-consistently reconstruct density from distribution function: $\rho(r) = 4\pi \int_0^{v_{\max}(r)} v^2 f\left(\mathcal{E}\right) \mathrm{d}v$

Numbers of cycles

$m_1 = 10^{\circ} M_{\odot}, N_{\text{cycles}} = 5.71 \times 10^{\circ} \text{ in vacuum}$						
	$\gamma_{ m sp} = 1.5$	$\gamma_{ m sp}=2.2$	$\gamma_{\rm sp}=2.3$	$\gamma_{ m sp} = 2.\overline{3}$		
Static	< 1	2.4×10^4	1.6×10^5	2.9×10^5		
Dynamic	< 1	2.7×10^2	1.9×10^3	3.5×10^3		

0

m_1	=	10^{4}	M_{\odot} ,	$N_{\rm cycles}$	= 3.20	×	10^{6}	in	vacuum
-------	---	----------	---------------	------------------	--------	---	----------	----	--------

0	$\gamma_{\rm sp}=1.5$	$\gamma_{\rm sp}=2.2$	$\gamma_{\rm sp}=2.3$	$\gamma_{ m sp}=2.\overline{3}$
Static	< 1	1.4×10^3	8.7×10^3	1.6×10^4
Dynamic	< 1	6.2×10^2	4.0×10^3	7.4×10^3

TABLE I. Change in the number of cycles ΔN_{cycles} during the inspiral. Change in the total number of GW cycles due to dynamical friction, starting 5 years from the merger.