Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis

Miguel Escudero Abenza

miguel.escudero@tum.de

Based on:

arXiv:1810.00880, PRD 99, 035031 (2019) with: Gilly Elor & Ann Nelson arXiv:2101.XXXX with: Gonzalo Alonso-Álvarez & Gilly Elor

New Trends in Dark Matter 09-12-2020 Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

The Universe

Baryonic Matter

Dark Matter

Planck 2018 1807.06209

Miguel Escudero (TUM)

New Trends in DM 09-12-20 2

Theoretical Understanding?

Motivating Question:

What fraction of the Energy Density of the Universe comes from Physics Beyond the Standard Model?

99.85%!

SM Prediction:

Miguel Escudero (TUM)

B-Mesogenesis

The Universe

Baryonic Matter

Dark Matter

Planck 2018 1807.06209

Miguel Escudero (TUM)

Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis

arXiv:1810.00880 Elor, Escudero & Nelson

- 1) Baryogenesis and Dark Matter are linked
- 2) Baryon asymmetry directly related to B-Meson observables
- 3) Leads to unique collider signatures
- 4) Fully testable at current collider experiments

Outline

1) B-Mesogenesis

- 1) C/CP violation
- 2) Out of equilibrium
- 3) Baryon number violation?

2) A Minimal Model & Cosmology

3) Implications for Collider Experiments

- 4) Dark Matter Phenomenology
- 5) Summary and Outlook

Baryogenesis

The three Sakharov Conditions (1967):

1) C and CP violation

2) Out of equilibrium

3) Baryon number violation

Baryogenesis from B Mesons

1) C and CP violation

The key quantity: the semileptonic asymmetry,

$$A_{\rm SL}^q = {\rm Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q}\right) = \frac{\Gamma(\overline{B}_q^0 \to B_q^0 \to f) - \Gamma(B_q^0 \to \overline{B}_q^0 \to \bar{f})}{\Gamma(\overline{B}_q^0 \to B_q^0 \to f) + \Gamma(B_q^0 \to \overline{B}_q^0 \to \bar{f})}$$

Lenz & Tetlalmatzi-Xolocotzi 1912.07621 $A_{\rm SL}^d|_{\rm SM} = (-4.7 \pm 0.4) \times 10^{-4}$ $A_{\rm SL}^s|_{\rm SM} = (2.1 \pm 0.2) \times 10^{-5}$

small because (*m_b/m_t*)² is small

Measurements

$$A_{\rm SL}^d = (-2.1 \pm 1.7) \times 10^{-3}$$

 $A_{\rm SL}^s = (-0.6 \pm 2.8) \times 10^{-3}$

World averages (HFLAV)

 Plenty of BSM models that can enlarge the asymmetries up to 10⁻³: SUSY, Extradim, LR, 2HDM, new generations, Leptoquarks, Z' models (see e.g. 1511.09466, 1402.1181).

Baryogenesis from B Mesons

2) Out of equilibrium and production of B Mesons

 Require the presence of an out of equilibrium particle that dominates the energy density of the Universe and reheats it to a temperature of

 $T_{RH} = \mathcal{O}(10 \,\mathrm{MeV})$

This particle should be very weakly coupled, with lifetimes

 $\tau_{\Phi} = \mathcal{O}(10^{-3}\,\mathrm{s})$

• The decays don't spoil BBN or the CMB provided $T_{RH} > 5\,{
m MeV}$

de Salas *et al*. 1511.00672 Hasegawa *et al*. 1908.10189

Baryogenesis from B Mesons

2) Out of equilibrium and production of B Mesons

• Scalar particle with $m_{\Phi} \in 11 - 100 \,\mathrm{GeV}$ and $\tau_{\Phi} = \mathcal{O}(10^{-3} \,\mathrm{s})$ generically decays into b-quarks

 Φ b

• b-quarks Hadronize at $~T < T_{
m QCD} \sim 200 \, {
m MeV}$

 Coherent oscillations in the B⁰ system are maintained in the early Universe for Temperatures:

$$T \lesssim 20 \,\mathrm{MeV}$$

Baryogenesis and DM from B Mesons

3) Baryon number violation?

• Baryon number is conserved in our scenario: $\Delta B = 0$

In a similar spirit to Hylogenesis by Davoudiasl, Morrissey, Sigurdson, Tulin 1008.2399

 We make Dark Matter an anti-Baryon and generate an asymmetry between the two sectors thanks to the CP violating oscillations and subsequents decays of B-mesons.

A Summary of B-Mesogenesis

New B-Meson decay

Miguel Escudero (TUM)

B-Mesogenesis

New Trends in DM 09-12-20 14

The Boltzmann Equations

Universe's Evoluti	on $H^2 \equiv \left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi}{3m_{Pl}^2}\left(\rho_{\rm rad} + m_{\Phi}n_{\Phi}\right)$
Late time Decay and Radiation	$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$ $\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = \Gamma_{\Phi}m_{\Phi}n_{\Phi}$
DM evolution	$\frac{dn_{\xi}}{dt} + 3Hn_{\xi} = -\langle \sigma v \rangle_{\xi} \left(n_{\xi}^2 - n_{\text{eq},\xi}^2 \right) + 2\Gamma_{\Phi}^B n_{\Phi} \qquad \Gamma_{\Phi}^B = \Gamma_{\Phi} \times \text{Br} \left(B \to \psi + \text{Baryon} + \mathcal{M} \right)$ $\frac{dn_{\phi}}{dt} + 3Hn_{\phi} = -\langle \sigma v \rangle_{\phi} (n_{\phi}n_{\phi^{\star}} - n_{\text{eq},\phi}n_{\text{eq},\phi^{\star}}) + \Gamma_{\Phi}^B n_{\Phi} \times \left[1 + \sum_{q} A_{\ell\ell}^q \operatorname{Br}(\bar{b} \to B_q^0) f_{\text{deco}}^q \right]$ $\frac{dn_{\phi^{\star}}}{dt} + 3Hn_{\phi^{\star}} = -\langle \sigma v \rangle_{\phi} (n_{\phi}n_{\phi^{\star}} - n_{\text{eq},\phi}n_{\text{eq},\phi^{\star}}) + \Gamma_{\Phi}^B n_{\Phi} \times \left[1 - \sum_{q} A_{\ell\ell}^q \operatorname{Br}(\bar{b} \to B_q^0) f_{\text{deco}}^q \right]$
Baryon asymmetry $n_{\mathcal{B}} = n_{\phi} - n_{\phi}$	$fy: \frac{n_{\mathcal{B}}}{dt} + 3Hn_{\mathcal{B}} = 2\Gamma_{\Phi}n_{\Phi}\sum_{q} \operatorname{Br}\left(\bar{b} \to B_{q}^{0}\right) f_{\operatorname{deco}}^{q} A_{\operatorname{SL}}^{q} \operatorname{Br}\left(B \to \psi + \operatorname{Baryon} + \mathcal{M}\right)$

- Baryon asymmetry directly related to the CP violation in the B⁰ system and to the new decay of B mesons to a visible Baryon and missing energy.
- We take into account the decoherence of the B⁰ system in the early Universe.

Parameter Space

Parameter Space

Any room for a new decay mode?

Targeted decay modes are very constrained/well measured:

B-Factories $Br(B^+ \to K^+ \bar{\nu} \nu) < 10^{-5}$ **LHC** $Br(B^0_s \to \mu^+ \mu^-) = (2.7 \pm 0.6) \times 10^{-9}$

But our decay mode has not been targeted! $B \rightarrow \psi + Baryon$

What about the total width of B-Mesons?

Measurement: $Br(B \rightarrow p/\bar{p} + anything) = (8.0 \pm 0.4)\%$

Most stringent current constraint:

$$\operatorname{Br}(B \to \psi + \operatorname{Baryon} + \mathcal{M}) \lesssim 10\%$$

Future Searches

Baryogenesis Requires:

$$\operatorname{Br}(B \to \psi + \operatorname{Baryon} + \mathcal{M}) \gtrsim 10^{-4}$$

B-factories expected sensitivity: (given that $Br(B^+ \rightarrow K^+ \bar{\nu} \nu) < 10^{-5}$)

$$\operatorname{Br}(B \to \psi + \operatorname{Baryon}) \sim 10^{-5}$$

Ongoing searches with BaBar, Belle and Belle-II data!

The mechanism should be fully testable!

Miguel Escudero (TUM)

Dark Matter Phenomenology

Relic abundance obtained with:

 $\Omega_{\rm DM} h^2 = 0.12 \qquad \longrightarrow \qquad \langle \sigma v \rangle_{\rm dark} \simeq 25 \langle \sigma v \rangle_{\rm WIMP} \ \min[m_{\phi}, m_{\xi}]/{\rm GeV}$

• What kind of Dark Sector could allow for such cross sections but being compatible with the very strong constraints from the CMB observations?

Possible Dark Sectors

1) Annihilation into Sterile Neutrinos 0711.4866 Pospelov, Ritz, Voloshin

The annihilation can be predominantly p-wave: 1607.02373, Escudero, Rius, Sanz

2) Annihilation into Active Neutrinos

González-Macias, Illana and Wudka, 1506.03825,1601.05051, Blennow et. al. 1903.00006

Constraints on dark matter annihilating to neutrinos are very mild

Miguel Escudero (TUM)

Possible Dark Sectors

1) Annihilation into Sterile Neutrinos 0711.4866 Pospelov, Ritz, Voloshin

The annihilation can be predominantly p-wave: 1607.02373, Escudero, Rius, Sanz

2) Annihilation into Active Neutrinos

González-Macias, Illana and Wudka, 1506.03825,1601.05051, Blennow et. al. 1903.00006 Constraints on dark matter annihilating to neutrinos are very mild

3) Additional particles carrying baryon number

- New scalar Baryon with B = 1/3: \mathcal{A} $\phi^* + \phi \rightarrow \mathcal{A} + \mathcal{A}^*$ $\phi + \mathcal{A} \rightarrow \mathcal{A}^* + \mathcal{A}^*$ • Which in order to get $\Omega_{\rm DM}/\Omega_b = 5.36$ will require $m_{\mathcal{A}} \sim \frac{5}{3}m_p \sim 1.6 \,{\rm GeV}$
- Gives an understanding for the observed Dark Matter to Baryon energy density ratio.

No Direct Detection Signatures

No direct coupling between the dark matter and light quarks

Coupling can be generated through weak loops:

$$u s b \psi \rightarrow f_{\pi}^2 G_F V_{tb} V_{ts}^{\star} u s s \psi \sim 10^{-8} u s s \psi$$

These processes are possible and could be searched for at Super-Kamiokande:

But the rate is tiny, hence unobservable see 1008.2399 by Davoudiasl, Morrissey, Sigurdson & Tulin

Summary

Baryogenesis and Dark Matter from B-mesons:

- Which actually relates the CP violation in the B⁰ system to Baryogenesis
- Baryon number is conserved and hence Dark Matter is anti-Baryonic

Distinct experimental signatures:

- Positive semileptonic CP asymmetry in B meson decays $A_{\rm SL}^q > 10^{-5}$
- Neutral and charged B mesons decay into baryons and missing energy Br $(B \to \psi + \text{Baryon} + \mathcal{M}) \gtrsim 10^{-4}$

Ongoing search for this process at BaBar, Belle and Belle-II!

B-factories should test this scenario given the constraints on other missing energy channels:

$$\operatorname{Br}(B^+ \to K^+ \bar{\nu}\nu) < 10^{-5}$$

We expect the mechanism to be testable at current collider experiments!

Outlook

Theory

- Are the flavor anomalies (b → sµ+µ-) in B-decays related to our required positive semileptonic asymmetry?
- Are there other possibilities for the dark sector?
- What kind of UV theory contains our required heavy colored scalar plus our dark matter particles at the GeV scale?

E.g.: SUSY, 1907.10612 Alonso-Álvarez, Elor, Nelson, Xiao

Experiment

• How well will BaBar/Belle/Belle-II constraint or measure?

$$\operatorname{Br}(B \to \psi + \operatorname{Baryon})$$

Miguel Escudero (TUM)

B-Mesogenesis

arXiv:2101.XXXXX with: Gonzalo Alonso-Álvarez & Gilly Elor

```
Miguel Escudero (TUM)
```

B-Mesogenesis

Thank You!

Miguel Escudero (TUM)

B-Mesogenesis

New Trends in DM 09-12-20 27

Back Up

Miguel Escudero (TUM)

New Trends in DM 09-12-20 28

The Dark Sector in Depth

Dark Matter Abundance: Baryon Symmetric Component

• $\langle \sigma v \rangle$ in our scenario is about one order of magnitude larger than for WIMPS because $\Omega h^2 \propto x_{\rm FO} / \langle \sigma v \rangle$ and for WIMPS $x = m/T \simeq 20$ but in our case $x = m/T \simeq 2 \,{\rm GeV}/10 \,{\rm MeV} \simeq 200$.

we are left to calculate the scattering cross section for ontents 40 practice we have the se transe and Informetve some high temperature above the practice of some solution of the provided it $\frac{1}{2}$ and $\frac{1}{2}$ alt Pholygerouthat all the D ig its number density for N is the provided it is $dd dec 4P^2$ inithermal equilibrium. $\cos 2\beta < 0$ \sin $C \rightarrow 0.95$ $-\operatorname{cos}^{\operatorname{exc}}_{\Theta}$ $m_{\mathcal{B}_0} + E(1$ Φ evolution **BO** Meson Mixing we assume that Φ was in the matrix $2\pi^2 \frac{9.9}{2}$ assume that Φ was in the matrix $2\pi^2 \frac{9.9}{2}$ with the parameters $4\pi^2$ as $4\pi^2$ = 106 GeV.ing is described by the Hamiltonian H. re the meson Meson Mixing $T_{dec} = 100$ $T_{dec} = 10$ ber provided it is $T_{dec} > 15 \text{ GeV}$ so that all the SM (B) with the top, the diggs and the EW and the effective we notice that ons are still in thermal equilibrium ere Maisithe nass matrix and are the meson and anti-meson has so Th re Meson Mixing the is described butilmethomiltarian to see in the second state CP violating polyton reputies are at the stars of the sta mixing resume time evolve: account for the ass matrix mediate decays ELA HERE EVEN LEPTONES ETCAR mixing resumsered hit he mass matrix but ions of the posterio the deciver matrix 2 (sint of a absorptive contribut The off-degronal edge -auark).

eal intermediate de

Semileptonic Asymmetry measurements

Back Up: Flavourful Variations

Operator	Initial State	Final state	$\Delta M \ ({\rm MeV})$
	B_d	$\psi + \Lambda \left(usd ight)$	4163.95
al have	B_s	$\psi + \Xi^0 \left(uss \right)$	4025.03
$\varphi o u s$	B^+	$\psi + \Sigma^+ \left(uus \right)$	4089.95
	Λ_b	$ar{\psi} + K^0$	5121.9
	B_d	$\psi + n (udd)$	4340.07
ab hard	B_s	$\psi + \Lambda \left(u d s ight)$	4251.21
$\varphi \circ u u$	B^+	$\psi + p\left(duu ight)$	4341.05
	Λ_b	$ar{\psi} + \pi^0$	5484.5
	B_d	$\psi + \Xi_c^0 (csd)$	2807.76
whee s	B_s	$\psi + \Omega_c \ (css)$	2671.69
φ o c s	B^+	$\psi + \Xi_c^+ (csu)$	2810.36
	Λ_b	$\bar{\psi} + D^- + K^+$	3256.2
	B_d	$\psi + \Lambda_c + \pi^- \left(c d d \right)$	2853.60
wheed	B_s	$\psi + \Xi_{c}^{0} \left(c d s \right)$	2895.02
φυτα	B^+	$\psi + \Lambda_c \left(dcu \right)$	2992.86
	Λ_b	$ar{\psi}+\overline{D}^0$	3754.7

Table 1: Here we itemize the lightest possible initial and final states for the B decay process to visible and dark sector states resulting from the four possible operators. The diagram in Figure ?? corresponds to the first line. The mass difference between initial and final visible sector states corresponds to the kinematic upper bound on the mass of the dark sector ψ baryon.

B-Mesogenesis

New Trends in DM 09-12-20 32

Back Up: Parameters

Parameter	Description	Range	Benchmark Value	Constraint
m_{Φ}	Φ mass	$11-100 { m ~GeV}$	$25~{ m GeV}$	-
Γ_{Φ}	Inflaton width	$3\times 10^{-23} < \Gamma_{\Phi}/\mathrm{GeV} < 5\times 10^{-21}$	$10^{-22}\mathrm{GeV}$	Decay between $3.5{\rm MeV} < T < 30{\rm MeV}$
m_ψ	Dirac fermion mediator	$1.5{\rm GeV} < m_\psi < 4.2{\rm GeV}$	$3.3~{\rm GeV}$	Lower limit from $m_{\psi} > m_{\phi} + m_{\xi}$
$m_{m{\xi}}$	Majorana DM	$0.3{\rm GeV} < m_\xi < 2.7{\rm GeV}$	1.0 and $1.8~{\rm GeV}$	$ m_{\xi} - m_{\phi} < m_p - m_e$
m_{ϕ}	Scalar DM	$1.2 \mathrm{GeV} < m_{\phi} < 2.7 \mathrm{GeV}$	1.5 and $1.3~{\rm GeV}$	$ m_{\xi} - m_{\phi} < m_p - m_e, m_{\phi} > 1.2 \text{GeV}$
y_d	Yukawa for $\mathcal{L} = y_d \bar{\psi} \phi \xi$		0.3	$<\sqrt{4\pi}$
$Br(B \to \phi \xi +)$	Br of $B \to ME + Baryon$	$2 \times 10^{-4} - 0.1$	10^{-3}	< 0.1 [5]
$A^s_{\ell\ell}$	Lepton Asymmetry B_d	$5 \times 10^{-6} < A_{\ell\ell}^d < 8 \times 10^{-4}$	6×10^{-4}	$A^d_{\ell\ell} = -0.0021 \pm 0.0017 \ [5]$
$A^s_{\ell\ell}$	Lepton Asymmetry B_s	$10^{-5} < A_{\ell\ell}^s < 4 \times 10^{-3}$	10^{-3}	$A^s_{\ell\ell} = -0.0006 \pm 0.0028 \ [5]$
$\langle \sigma v angle_{\phi}$	Annihilation Xsec for ϕ	$(6-20) \times 10^{-25} \mathrm{cm}^3/\mathrm{s}$	$10^{-24} \mathrm{cm}^3/\mathrm{s}$	Depends upon the channel [3]
$\langle \sigma v \rangle_{\xi}$	Annihilation X sec for ξ	$(6-20) \times 10^{-25} \mathrm{cm}^3/\mathrm{s}$	$10^{-24}{\rm cm}^3/{\rm s}$	Depends upon the channel $[3]$

Back Up: Decoherence

Miguel Escudero (TUM)

B-Mesogenesis

New Trends in DM 09-12-20 34

CP violation in b → cĉs

The sign of $\phi_s^{c\hat{c}s}$ determines the sign of A_{SL} !

Miguel Escudero (TUM)

B-Mesogenesis

Results: $A^d < 0$ and $A^s > 0$

 $m_{\xi} = 1.8 \,\mathrm{GeV}$ $m_{\phi} = 1.3 \,\mathrm{GeV}$

An Explicit Model

Minimal Particle Content

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

B-mesons decay into DM (missing energy) and a Baryon

Heavy Colored Triplet Scalar: $Y \sim (3, 1, -1/3)$

- $\mathcal{L} \supset -y_{ub} Y^* \bar{u} b^c y_{\psi s} Y \bar{\psi} s^c + h.c$ $m_Y > 1.2 \,\mathrm{TeV}$ (4-jet/squark)
- $\mathcal{H}_{eff} = \frac{y_{ub}y_{\psi s}}{m_Y^2} u \, s \, b \, \psi$ also possible $c \, s \, b \, \psi$, $u \, d \, b \, \psi$, $c \, d \, b \, \psi$
- $\Delta B = 0$ operator induces new b-quark decay $ar{b} o \psi us$ (CP ar number of b

(CP and Baryon number conserving)

• Br
$$(B \to \psi + \text{Baryon} + \mathcal{M}) \simeq 10^{-3} \left(\frac{m_B - m_{\psi}}{2 \,\text{GeV}}\right)^4 \left(\frac{1.6 \,\text{TeV}}{M_Y} \frac{\sqrt{y_{ub} y_{\psi s}}}{0.6}\right)^4$$

An Explicit Model

Minimal Particle Content

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

B-mesons decay into DM (missing energy) and a **Baryon**

The Dark Sector:

- ψ : Dirac Dark Baryon
 - For the b-quark decay to happen: $m_{\psi} < m_B m_{\text{Baryon}} < 4.3 \,\text{GeV}$
 - ψ needs to have decays into other dark sector particles or will decay back to visible baryons and undo the Baryogenesis $\tau(\psi \rightarrow p + \pi^{-}) \sim 10^4$ years

An Explicit Model

Minimal Particle Content

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

The Dark Sector:

- ϕ : Charged Stable Scalar anti-Baryon ξ : Dark Stable Majorana Fermion
- Minimal Dark sector interaction $\ {\cal L} \ \supset \ -y_d \, ar{\psi} \, \phi \, \xi$ with Z₂ symmetry
- **Constraints:**
 - $m_{\phi} + m_{\xi} < m_{\psi} < 4.3 \,\mathrm{GeV}$ • $\psi \rightarrow \phi \xi$ Decay:
 - $|m_{\xi} m_{\phi}| < m_p + m_e$ • DM Stability:
 - Neutron Star Stability:

B-mesons decay into DM (missing energy) and a Baryon

Miguel Escudero (TUM)

 $m_{\psi} > m_{\phi} > 1.2 \,\mathrm{GeV}$

New Trends in DM 09-12-20 39

McKeen, Nelson, Reddy, Zhou 1802.08244