Improving Covariance Matrices using Machine Learning

Natalí Soler Matubaro de Santi

natalidesanti@gmail.com

Advisor: Prof. Dr. Luis Raul Weber Abramo

Mathematical Physics Department University of São Paulo

December 17, 2020

Introduction			
•00	0	000	0

Motivation: Why improving covariance matrices?

They reflect the propagation of the statistical errors:

Motivation: Why improving covariance matrices?

They reflect the propagation of the statistical errors:

Planck 2018 results: VI Cosmological parameters.

Introduction ○●○		
Problem		

■ To represent the true statistical errors we need a lot of data to build these matrices:

Introduction ○●○		
Problem		

To represent the true statistical errors we need a lot of data to build these matrices:

But we can not always do it in practice...

Introduction	Methodology	
000		

Proposed solution

Introduction	Methodology	
000		

Proposed solution

Introduction	Methodology	
000		

Proposed solution

Methodology •	

Methodology - Toy project simulation

The simulations followed the theoretical function:

$$P(k) = P_0 \exp\left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]$$

	Value
P_0	1Mpc/h
k_0	0.15 <i>h/Mpc</i>
σ_0	0.03 <i>h/Mpc</i>

Methodology	

Methodology - Toy project simulation

The simulations followed the theoretical function:

$$P(k) = P_0 \exp\left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]$$

	Value
P_0	1Mpc/h
k_0	0.15 <i>h/Mpc</i>
σ_0	0.03 <i>h</i> / <i>Mpc</i>

We trained different **denoisers** using, each time:

- input_train: **bad cov. matrices** (hundreds of spectra) ⇒ *n*;
- target_train: good cov. matrices $\Rightarrow N = 6000$;

Methodology	

Methodology - Toy project simulation

The simulations followed the theoretical function:

$$P(k) = P_0 \exp\left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]$$

	Value
P_0	1Mpc/h
k_0	0.15 <i>h/Mpc</i>
σ_0	0.03 <i>h</i> / <i>Mpc</i>

We trained different **denoisers** using, each time:

- input_train: **bad cov. matrices** (hundreds of spectra) ⇒ *n*;
- target_train: good cov. matrices $\Rightarrow N = 6000$;

Then, we test the each **denoiser** with:

• input_test: **bad cov. matrices** (hundreds of spectra) ⇒ *n*.

Methodology	Results	
	000	

Results - Visual Results

Methodology	Results	
	000	

Results - Visual Results

	Results	
	000	

Results - Markov Monte Carlo Chain (MCMC)¹: Recovering Parameters

¹lvezić, Z. et al., Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data, 2014.

		Results	
000	0	000	0

Results - Markov Monte Carlo Chain (MCMC)¹: Recovering Parameters

¹Ivezić, Z. et al., Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data, 2014.

Methodology	Results	
	000	

Results - Sigma fraction: σ_X/σ_{Best}

Varying the number of spectra *n* in the bad/input covariance matrices;
Same number of spectra *N* in the good/target covariance matrices;

Methodology	Results	
	000	

Results - Sigma fraction: σ_X/σ_{Best}

Varying the number of spectra *n* in the bad/input covariance matrices;
 Same number of spectra *N* in the good/target covariance matrices;

		Conclusions and Next steps
Conclusions and	l Next Steps	

We have achieved great results using image denoising techniques to improve the *covariance matrices*;

		Conclusions and Next steps
Conclusions and	Next Steps	

- We have achieved great results using image denoising techniques to improve the *covariance matrices*;
- We showed that even with a low number of simulations, we can achieve the same results as a higher number of them;

		Conclusions and Next steps
Constructions on	I Nové Stone	

Conclusions and Next Steps

- We have achieved great results using image denoising techniques to improve the *covariance matrices*;
- We showed that even with a low number of simulations, we can achieve the same results as a higher number of them;
- Once all this work is a really controlled "toy project", we want to apply the same method in realistic simulations (e.g., ExSHalos, LogNormals, N-body).