

Improving Covariance Matrices using Machine Learning

Natalí Soler Matubaro de Santi

<natalidesanti@gmail.com>

Advisor: Prof. Dr. Luis Raul Weber Abramo

Mathematical Physics Department University of São Paulo

December 17, 2020

Motivation: Why improving covariance matrices?

 \blacksquare They reflect the propagation of the statistical errors:

Motivation: Why improving covariance matrices?

 \blacksquare They reflect the propagation of the statistical errors:

Planck 2018 results: VI Cosmological parameters.

■ To represent the true statistical errors we need a lot of data to build these matrices:

■ To represent the true statistical errors we need a lot of data to build these matrices:

But we can not always do it in practice…

Proposed solution

Proposed solution

Proposed solution

Methodology - Toy project simulation

\blacksquare The simulations followed the theoretical function:

$$
P(k) = P_0 \exp\left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]
$$

Methodology - Toy project simulation

 \blacksquare The simulations followed the theoretical function:

$$
P(k) = P_0 \exp \left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]
$$

 \blacksquare We trained different **denoisers** using, each time:

- input train: **bad cov. matrices** (hundreds of spectra) \Rightarrow *n*;
- target train: good cov. matrices \Rightarrow $N = 6000$;

Methodology - Toy project simulation

 \blacksquare The simulations followed the theoretical function:

$$
P(k) = P_0 \exp \left[-\frac{(k-k_0)^2}{2\sigma_0^2}\right]
$$

 \blacksquare We trained different **denoisers** using, each time:

- input train: **bad cov. matrices** (hundreds of spectra) \Rightarrow *n*;
- target train: good cov. matrices \Rightarrow $N = 6000$;

 \blacksquare Then, we test the each **denoiser** with:

• input test: **bad cov. matrices** (hundreds of spectra) \Rightarrow *n*.

Results - Visual Results

Results - Visual Results

Results - Markov Monte Carlo Chain (MCMC)¹: Recovering Parameters

¹ Ivezić, Z. et al., Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data, 2014.

Results - Markov Monte Carlo Chain (MCMC)¹: Recovering Parameters

$$
\frac{\Delta \mu}{\sigma_{\text{Best}}} = \frac{\mu_X - \mu_{\text{Best}}}{\sigma_{\text{Best}}}
$$

¹ Ivezić, Z. et al., Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data, 2014.

Results - Sigma fraction: $\sigma_X/\sigma_{\text{Best}}$

 \blacksquare Varying the number of spectra *n* in the bad/input covariance matrices; Same number of spectra N in the good/target covariance matrices;

Results - Sigma fraction: $\sigma_X/\sigma_{\text{Best}}$

 \blacksquare Varying the number of spectra *n* in the bad/input covariance matrices; Same number of spectra N in the good/target covariance matrices;

Conclusions and Next Steps

 \blacksquare We have achieved great results using **image denoising** techniques to improve the covariance matrices;

Conclusions and Next Steps

- We have achieved great results using **image denoising** techniques to improve the covariance matrices;
- \blacksquare We showed that even with a **low** number of simulations, we can achieve the same results as a **higher** number of them;

Conclusions and Next Steps

- We have achieved great results using **image denoising** techniques to improve the covariance matrices;
- \blacksquare We showed that even with a **low** number of simulations, we can achieve the same results as a **higher** number of them;
- \blacksquare Once all this work is a really controlled "toy project", we want to apply the same method in **realistic simulations** (e.g., ExSHalos, LogNormals, N-body).