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Introduction Methodology Results Conclusions and Next steps

Motivation: Why improving covariance matrices?

� They reflect the propagation of the statistical errors:
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Planck 2018 results: VI Cosmological parameters.
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Problem

� To represent the true statistical errors we need a lot of data to build
these matrices:

But we can not always do it in practice…

3/9



Introduction Methodology Results Conclusions and Next steps

Problem

� To represent the true statistical errors we need a lot of data to build
these matrices:

But we can not always do it in practice…

3/9



Introduction Methodology Results Conclusions and Next steps

Proposed solution

ML

'

Image denoising
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Methodology - Toy project simulation

� The simulations followed the theoretical function:

P(k) = P0 exp

[
− (k − k0)2

2σ2
0

] Value
P0 1Mpc/h
k0 0.15h/Mpc
σ0 0.03h/Mpc

� We trained di�erent denoisers using, each time:
• input train: bad cov. matrices (hundreds of spectra)⇒ n;
• target train: good cov. matrices⇒ N = 6000;

� Then, we test the each denoiser with:
• input test: bad cov. matrices (hundreds of spectra)⇒ n.
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Results - Visual Results
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Results - Markov Monte Carlo Chain (MCMC)1: Recovering Parameters
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1Ivezić, Z. et al., Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python
Guide for the Analysis of Survey Data, 2014.
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Results - Sigma fraction: σX/σBest

� Varying the number of spectra n in the bad/input covariance matrices;
� Same number of spectra N in the good/target covariance matrices;

8/9



Introduction Methodology Results Conclusions and Next steps

Results - Sigma fraction: σX/σBest

� Varying the number of spectra n in the bad/input covariance matrices;
� Same number of spectra N in the good/target covariance matrices;

8/9



Introduction Methodology Results Conclusions and Next steps

Conclusions and Next Steps

� We have achieved great results using image denoising techniques to
improve the covariance matrices;

� We showed that even with a low number of simulations, we can achieve
the same results as a higher number of them;

� Once all this work is a really controlled “toy project”, we want to apply
the same method in realistic simulations (e.g., ExSHalos, LogNormals,
N-body).
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