

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

21 cm cosmology and the BINGO Telescope

Reuven Opher Workshop on Challenges

of New Physics in Space

Carlos Alexandre Wuensche

International Centre for Theoretical Physics South American Institute Divisão de Astrofísica - INPE

December 2021

Plan of the talk

21 cm cosmology

the BINGO project

Era of precision cosmology

- Cosmology is now in a golden area with plenty of data (Planck, SDSS, DES and other large surveys)
- There are still a few key questions to be answered!
 - □ Inflation (t<10⁻³² s) maybe CMB with B-mode polarization results
 - $\hfill\square$ What is the nature of Dark Matter?
 - $\hfill\square$ What is the nature of Dark Energy?
 - Dark energy (EUCLID, HETDEX, DESI, LSST DoE flagship projects)

Image Credit: Dana Berry / SkyWorks Digital Inc. and the SDSS collaboration.

Dark Energy Observation program

- Instruments: JWST, SKA, LSST, Euclid, DESI
- Observational targets
 - □ Galaxy Cluster Counting
 - Targets: SZ and X-ray cluster surveys
 - 🗆 SN Ia
 - Targets: Large, low-z, SN survey
 - Weak Gravitational Lensing
 - Targets: optical surveys and 21 cm interferometric measurements
 - □ Baryon Acoustic Oscillations
 - Targets: D(z), H(z)

Can also be studied in different (higher z) with radio observations (mostly 21 cm data)!!!!

21 cm cosmology and BAO

INPE

Source: ESA

Baryon oscillations seen in the CMB distribution can be observed in the spatial distribution of galaxies

BAO highlights

- Acoustic waves imprinted on CMB 380,000 years after Big Bang
- Acoustic scale D set by distance light travelled at that time
 - □ Known precisely from CMB power spectrum => D=147.18±0.29 Mpc (from Planck)
- Universe is reasonably well understood from t ~ 10⁻⁶s to t ~ 380 kyears and then after Cosmic Dawn (t ~ 180 Myears)
- History of matter evolution can be traced via HI (and its "disappearance") from z=20 to z=0

Alternative to optical BAO: HI Intensity mapping

- Use relatively large beam on the sky
 - □ Measure HI *fluctuations*
- HI intensity mapping can be used as mass tracer, probing distortions in redshift space
- No competition in the radio
- Complementary to large optical surveys
- Similar to CMB, using:

 $\Delta T_{CMB} = \Delta T_{CMB}(\theta, \phi, z = 1100)$ $\Delta T_{HI} = \Delta T_{HI}(\theta, \phi, z)$

- Large beam on the sky (≈1 deg) contains many galaxies.
- · HI signal is measured through its overall intensity

P(k) and ξ (r) are Fourier pairs!!!! A peak in the correlation function (r) space corresponds to oscillations in the power spectrum (k) space

s / h⁻¹ Mpc

8

C. A. Wuensche (2021)

INPE

Source: CAASTRO (Centre of Excellence for All-sky Astrophysics), https://www.youtube.com/watch?v=jpXuYc-wzk4

C. A. Wuensche (2021)

The HI signal power spectrum

The Beauty of Standard Volumes

INPE

$$H(z) = \frac{c\Delta(z)}{s_{\parallel}(z)}$$

 $d_A(z) = \frac{s_{\perp}(z)}{\Delta\theta(1+z)}$

Next related slides from Bassett & Hlozek (2009)

C. A. Wuensche (2021)

the characteristic BAO

to the line of sight.

radius, on a plane transverse

Rings of Power Superimposed

Detecting the characteristic radius is now a statistical problem

2.5

Bassett & Hlozek (2009)

BAO scale

INPE

Fig. 27. Redshift-distance relation measured by BAO surveys, compared to the predictions of the Λ CDM model constrained by *Planck*. The grey band centred at unity shows the ± 1 and $\pm 2\sigma$ confidence regions for the *Planck* prediction, given the remaining uncertainties in the parameters. This is a percent-level prediction of the distance scale. The BAO points are: 6dFGS, green star (Beutler et al. 2011); SDSS MGS, purple square (Ross et al. 2015); BOSS DR12, red triangles (Alam et al. 2017); WiggleZ, blue circles (Kazin et al. 2014); SDSS quasars, red circle (Ata et al. 2018); and BOSS Ly α , yellow cross (Bautista et al. 2017).

Z

Why BAO in radio?

- Complementary to optics, different systematics
- Decay time of HI hyperfine transition is ~ 10¹⁵ seconds, but 75% of visible matter in the Universe is made of H...
- Efficient alternative for measuring a large number of galaxies individually (plus integrating the signal "alla" CMB allows for the reutilization of a large background experience in instrumentation and data analysis)
- Interferometers are excellent instruments for these measurements, but: more expensive, hard to operate and maintain
- Approach: single-dish, many horns X single horn per dish

21 cm cosmology/astrophysics A hot topic in today's astronomy

Credit: https://www.discovermagazine.com/the-sciences/chasing-the-universes-first-generation-of-stars

C.A. Wuensche (2021)

INPE

21 cm hyperfine transition line...

- H is the most abundant element in the Universe
- Neutral H (HI) is most important, BUT:
 - Very difficult to detect in cosmological distances
- 21 cm "forbidden" transition line
 - 1 atom emits a photon every 10¹⁵ s (~ 30 Myr), so it shou very weak signal
 - But.... There are zillions of H atoms in the Universe!
 - □ Frequency: 1420.406 MHz (\Rightarrow wavelength \approx 21.106 cm radio)
- Observed since 1950s' but only restricted to the Galaxy and neighbour galaxies (z < 0.1)
- Doppler shift of HI line gives direct information of velocity and distance
- Redshift of interest starts at frequencies < 1 GHz</p>

The basic idea...

$$T_b = T_b(0) e^{-\tau_{\nu}} + T_S(1 - e^{-\tau_{\nu}}),$$

 $T'_b(z) = T_b(z)(1+z) = T_S e^{-\tau_{\nu}} + T_{\gamma}(z)(1-e^{-\tau_{\nu}}).$

The temperature of the 21 cm line transition

A detailed derivation can be found in Furlanetto, Oh & Briggs (Phys. Rep. 2006)

The Intensity Mapping (IM) concept

Measure the large scale features from the integrated emission of galaxies + IGM, from spectral line of different elements (H, C, O, ...), not worrying about individual objects

CO emission

VLA (simulated, 4500h, detects 1% of all emitting sources in the FoV)

COMAP (simulated, 1500h, sensitive to all sources emitting in the FoV)

CO, CII – star formation regions Ly-alpha – galaxy halos HI – neutral gas from outside bubbles Continuum - CIB

Kovetz et al. (arXiv:1709.09066)

Different environments, different physics, deeper understanding of the star formation process at high-z

C. A. Wuensche (2021)

Kovetz et al. (arXiv:1709.09066)

IM highlights

- Uses the integrated emission from spectral lines in galaxies and/or diffuse IGM to track growth and evolution of cosmic structure
- Covers very large volumes in a smaller amount of time, compared to optical surveys
- Reduced angular resolutions also allows for a wider instantaneous FOV
- Measure spatial fluctuations of the integrated flux of many unresolved objects instead of tracking one by one
- Sensitive to all objects emitting in that line, instead of being flux-limited
- Frequency of line emission directly relates to the z
- Besides HI, we can also investigate H α , CO, C[II], Ly- α and OII

IM challenges

- Disentanglement of galactic and radio source emission, much stronger than the IM signal
- Confusion from interloping emission lines
- Non-gaussian nature of the signal
- Calibration uncertainties can significantly hamper the signal of interest

Intensity Mapping experiments status

Probe	Results Published	Currently Observing / Under	Construction Planned
E Med. z Low z	GBT Parkes PAPER	CHIME HIRAX	SKA BINGO BT-HIM
Lyalpha Hbeta Halpha			SPHEREX
co	COPSS	mmIME C	
[CII]		co	TIME CCAT-p NCERTO PIXIE
[NII]		ST	ARFIRE
[0]			credit: Abigail Crites

Desirable items for a single dish HI surveyor

- Large collecting area (> 500 m^2)
- Large covered area on the sky (care should be take very small scales, < 0.1 Mpc.h⁻¹) nel
- Low sidelobes and good (precise shape) h
- Long observing time (> 1 year)
- Sensitivity to intermediate scale
- Redshift range: 0.1 < z < 1''
- Frequency range:
 - 1300 MHz => z≈∩
 - 100 MHz =>

 \neg AO is important (0 < z < 2)

. than 0.7 after that)

ving out

BUT.... lots of Radio Frequency Interference (RFI) in this frequency range

Adapted from Bull et al. 2015

Foreground removal

- 1. Astrophysical Challenges
 - 1. Foregrounds: total intensity
 - 2. Foregrounds: polarized
 - 3. Ionosphere
 - 4. Etc.
- 2. Instrumental challenges
 - 1. Beam stability
 - 2. Calibration
 - 3. Resolution
 - 4. uv coverage
 - 5. Etc.
- 3. Computational challenges
 - 1. Multi petabyte data set
 - 2. Calibration
 - 3. inversion

The BINGO Telescope

BAOs from Integrated Neutral Gas Observations

BINGO - BAOs in Integrated Neutral Gas Observations

Visit us at https://bingotelescope.org

Our sponsors

INPE

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

A survey of current and future experiments...

Source: The BINGO Collaboration

Abdalla et al. (arXiv:2107.01633, 2021

The BINGO main science case

(We are building an ultra-deep large-area spectral survey at 980-1260 MHz)

- Measure BAOs on top of the 21 cm Hydrogen spectrum => intensity mapping in radio
- Redshift interval BINGO will reach starts right after DE starts dominating the Universe => possible to set constraints on its properties
- HI intensity mapping can be used as mass tracer, probing distortions in redshift space
- Complementary to large optical surveys

Additional science with BINGO

- BAOs contain additional information about matter density, redshift distortions and anisotropic BAOs...
- Life history of hydrogen
- Radio recombination lines
- Galactic continuum
- **FRBs**, delivered "for free" due to the nature of BINGO observational strategy

Project management status (December 2021)

- Most of the funding (> 60%) is already granted
 - □ FAPESP: main funding agency
 - □ General coordination: Elcio Abdalla (IF/USP)
 - Management team: C. A. Wuensche (INPE), Luciano Barosi (UFCG), Filipe Abdalla (UCL), Bin Wang (YangZhou Univ.)
- BINGO construction proceeds...
 - □ Road work and site preparation started January 2021
 - □ Horn, transitions, polarizer, and magic tee prototypes successfully tested (2018 2021)
 - Main receiver components (first stage LNAs and filters, secondary LNAs and filters) qualified (2020 – 2021)
 - □ Simple radiometer successfully integrated to the digital backend at INPE
 - □ First horn prototype coupled to a simple radiometer currently looking at the sky in Paraíba
 - Optical design completed (2021)
 - □ Civil engineering project near completion
 - Data analysis pipeline in a very advanced stage needs integration in an end-to-end format

Project management status (December 2021)

YESTERDAY THE PARAIBA STATE GOVERNMENT GRANTED R\$ 12M FOR DISH FABRICATION

- □ General coordination:
- Management team: C.
 Wang (YangZhou Univ.

BINGO construction p

- □ Road work and site pre
- □ Horn, transitions, pola
- Main receiver compon (2020 – 2021)
- □ Simple radiometer suc
- □ First horn prototype cc
- Optical design complet
- Civil engineering proje
- Data analysis pipeline i

0

João Azevêdo assegura R\$ 12 milhões para implantação de radiotelescópio no Sertão e destaca investimentos para o fomento à pesquisa na Paraíba

publicado: 14/12/2021 14h21, última modificação: 14/12/2021 14h21

C. A. Wuensche (2021)

The "FIDUCIAL" BINGO – Phase 1 (June 2021)

TELESCOPE INFORMATION

INPE

Site coordinates (vertex of th					
7° 2' 27,6" S	38° 16' 4.8" W		N/I		
Site denomination: Serra da Catarina,	Aguiar (PB)		IVI		
Focal length (m)	63.2		Ma		
Primary major semi-axis (m)	25.7		Frequen		
Primary minor semi-axis (m)	20.0		Instr		
Secondary major semi-axis (m)	18.3		Dig		
Secondary minor semi-axis (m)	18.0				
Primary area (m ²)	1620				
Effective area (average, m ²)	Fixed wire	-mosh nar	abolas		
Number of horns	Ne moving ports				
Telescope orientation	Transit tok	j parts			
Central declination (deg.)	- Most components "off-the-				
	4				

RECEIVER INFORMATION						
T_sys (K)	70					
Minimum frequency (MHz)	980					
Maximum frequency (MHz)	1260					
Frequency band (for 30 channels, MHz)	9.33					
Instrument noise (mK, 1 second)	26.5					
Digital backend FFT channels	2048					
Sampling time (s)	0.1					

h parabolas	VEY INFORMATION				
S	on (FWHM, deg.)	0.67			
0e nts "off-the-shelf"	d area (sqr deg)	5300			

C. A. Wuensche (2021)

Guiding principle : simplicity !

Challenges (December 2021)

- Large telescope: dishes will be made in China, should be mounted, aligned with the needed precision
- Large horns: fabrication process understood, working with the manufacturing company to improve horn fabrication process
- Calibration and stability: use colfets and a CW source as internal calibration. Noise and stability for both are the final steps for the full correlation
- Receiver stability: working on a Peltier cooling system to reduce system temperature and improve system stability
- Digital backend: SKARAB boards are in the lab. ROACH2 was integrated to the receiver and, as soon as the tests are completed we will migrate the software to the SKARABs
- Optical design: optics simulations indicate very small distortions of the beams for the current horn array. Final horn positioning in the structure are being calculated.
- Radio Frequency Interference: Mobile quiet zone implementation is negotiated with ANATEL

Sky coverage

LSST Cosmology map (simulated). arXiv:1708.04058, chap. 9, fig. 9.3. BINGO coverage area in white

E. Abdalla et al. "The BINGO Project I: Baryon Acoustic Oscillations from Integrated Neutral Gas Observations". arXiv:2107.01633 FRB detection estimates

Contents

•		ounciro												-
2	Inst	rument	Overview											3
	2.1	Fundin	g and timelin	ne	••	• •	•	23	•	•	•	÷	12	4
3	Scie	ntific G	oals I: Cosm	ology										4
	3.1	The H	Intensity M	apping S	Signa	1.								5
		3.1.1	HI Power S	pectrum										5
	3.2	Baryon	Acoustic	Oscillat	tions	a	nd	F	Re	ds	hi	ft		
		Space	Distortion .										250	6
	3.3	Constr	aining Cosm	ology .										6
		3.3.1	ACDM mo	del	1.1		-							6
		3.3.2	Dynamical	dark ene	rgy									7
		3.3.3	Modified G	ravity .				-						8
		3.3.4	Interacting	dark ene	rgy					-				8
		335	Massive ne	utrinos						-		-		9

2

	3.3.6	Redshift Space Distortions	
	3.3.7	HI history	0
	3.3.8	Systematic effects	
Sci	entific G	oals II: Astrophysics	
4.1	Transi	ent Objects Science	4
	4.1.1	Fast Radio Bursts	
	4.1.2	Pulsars	
4.2	Galact	tic Science	8
4.3	Extrag	alactic science - associated Hi absorption	
4.3 Sin	Extrag nulation	alactic science – associated Hi absorption s and Data Analysis Pipeline	
4.3 Sin 5.1	Extrag nulation Sky m	alactic science – associated Hi absorption s and Data Analysis Pipeline odule	•
4.3 Sin 5.1	Extrag nulation: Sky m 5.1.1 5.1.2	s and Data Analysis Pipeline odule Hiemission	
4.3 Sin 5.1	Extrag nulation Sky m 5.1.1 5.1.2 5.1.3	s and Data Analysis Pipeline odule Hiemission Galactic foregrounds	
4.3 Sin 5.1	Extrag sulation Sky m 5.1.1 5.1.2 5.1.3 Missie	alactic science – associated Hi absorption s and Data Analysis Pipeline odule Hi emission Galactic foregrounds Extragalactic point sources and CMB	
4.3 Sin 5.1	Extrag sky m 5.1.1 5.1.2 5.1.3 Missic	a of clark control of associated H absorption s and Data Analysis Pipeline odule H emission Galactic foregrounds Extragalactic point sources and CMB on simulation	
4.3 Sin 5.1	Extrag strag Sky m 5.1.1 5.1.2 5.1.3 Missic 5.2.1	s and Data Analysis Pipeline oodule Hiemission Galactic foregrounds Extragalactic point sources and CMB n simulation Beam profiles	
4.3 Sin 5.1	Extrag strag Sky m 5.1.1 5.1.2 5.1.3 Missic 5.2.1 5.2.2	s and Data Analysis Pipeline odule Hiemission Galactic foregrounds Extragalactic point sources and CMB on simulation Beam profiles Instrumental Noise	

* cabdalla@usp.br

	5.2.3 Radio Frequency Interference	14						
1.100		- 45						
5.3	Map-Making	10						
5.4	Component Separation	16						
5.5	Cosmology modules	17						
	5.5.1 Covariance estimation	17						
	5.5.2 Bispectrum estimation	17						
	5.5.3 Minkowski Functionals estimation	18						
Scie	ntific Synergies with other instruments	19						
6.1	BINGO in the wider context	19						
6.2	Square Kilometer Array	19						
6.3	MeerKAT	19						
6.4	СНІМЕ	19						
6.5	Five-hundred meter Aperture Spherical radio							
	Telescope (FAST)	20						
6.6	The Tianlai Project: a 21cm radio telescope array	20						
Conclusions								
ferer	ices	21						
	5.4 5.5 6.1 6.2 6.3 6.4 6.5 6.6 Con	5.4 Component Separation 5.5 Cosmology modules 5.5.1 Covariance estimation 5.5.2 Bispectrum estimation 5.5.3 Minkowski Functionals estimation 5.5.3 Minkowski Functionals estimation 5.5.4 Separation 5.5 Separa						

Minkowski functionals

Bispectrum analysis

C. A. Wuensche (2021)

C. A. Wuensche et al. "The BINGO Project II: Instrument Description". arXiv:2107.01634

C. A. Wuensche (2021)

F. Abdalla et al. "The BINGO Project III: Optical design and optimisation of the focal plane arXiv:2107.01635

130 120 110 H N 100 -9080 -200-210-240-250-10DEC (deg) 20 -15 -20 -20 -25 U -10 20 (je -15 DEC (deg) DEC -20 10 0 -25 30 -10 -10 -5 0 5 10 -5 10 0 RA (deg) RA (deg)

V. Liccardo et al. "The BINGO Project IV: Simulations for mission performance assessment and preliminary component separation steps" arXiv:2107.01636

Simulations of a single-dish IM experiment with BINGO characteristics. According to the results obtained we have optimized the focal plane design of the telescope. We found it is feasible to extract the cosmological signal across a wide range of multipoles and redshifts.

K. Fornazier et al. "The BINGO Project V: Further steps in Component Separation and Bispectrum Analysis" arXiv:2107.01637

Channel 10 maic

- The component separation method allows the subtratiion of the foreground ٠ contamination in the BINGO channels down to levels below the cosmological signal and the noise, and to reconstruct the 21-cm power spectrum for different redshift bins without significant loss at multipoles 20 < I < 500.
- The bispectrum analysis yields strong tests of the level of the residual ٠ foreground contamination in the recovered 21-cm signal, thereby allowing us to both optimize and validate our component separation analysis.

Fig. 13. Contour charts for the equisize configuration of the bispectrum in three different channels: 10 (first column), 15 (see (third column). Each line is related to each case analyzed total foremainds (first true). 21cm + white noise (second true

A. A. Costa et al. "The BINGO Project VI: Hi Halo Occupation Distribution and Mock Building" arXiv:2107.01639

J. Zhang et al. "The BINGO Project VII: Cosmological Forecasts from 21-cm Intensity Mapping" arXiv:2107.01638

- 1 What is the effect of different ways of linking H_I gas with galaxies (halos)?
- 2 What is the effect of RSD in angular power spectrum?
- 3 Can we identify the above difference with BINGO telescope?

- We have found that the bias is highly sensitive to the method of populating Hi in halos, which also means we can put constraints on the Hi distribution in halos by observing 21-cm intensity mapping.
- We have also illustrated that only with thin frequency bins (such as 2 MHz), we can discriminate the effect of Finger-of-God.
- All of our investigations using mocks provide useful guide for our expectation of BINGO experiments and other 21-cm intensity mapping experiments.

C. Novaes et al. "Forecasts on measuring the BAO signal with BINGO Hi intensity Mapping". Under final revision, to be submitted to arXiv in Jan. 2022

- FRB data analysis (led by Marcelo Novaes)
- Refining of foreground separation methods and map making (led by Eduardo Mericia)
- The BINGO receiver (led by Fred Vieira)
- Cross-correlations with optical surveys
- Other works in progress

Our schedule, as of today, is to have the final system assembled and ready to start commissioning time no later than March 2023

Visit us at http://www.bingotelescope.org