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Introduction
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* Black holes are regions of very strong gravity that is sufficient to warp
space, bend light and give rise to space-time singularities.

® |t is most probable that all black holes in nature are rotating and are
therefore described by the Kerr solution.

* In the presence of a cosmological constant, a generalization of the Kerr
metric is given by the Kerr-de Sitter metric.

* Recently, a new solution has been proposed, the Kerr-de Sitter Revisited
solution.

* Due to the presence of the cosmological constant, these space times have
four horizons.

* For astrophysical processes, another radius associated with cosmic
repulsion is relevant the so-called static radius.
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Introduction
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* When a black hole is in front of a luminous background, its unstable photon
region, a region containing null geodesics at a constant radius, will be
projected on the observer’s sky to form the so-called black hole shadow.

* A set of coordinates must be established in order to locate the shadow in
the sky. These coordinates are referred to as the celestial coordinates.

* Celestial coordinates can be calculated for distant observers or for
observers at arbitrary distance form the black hole.

* In Kerr de Sitter space time, the celestial coordinates have always been
obtained for observers at arbitrary distances. This is due to the space time
being asymptotically de sitter.

v
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What is the intent of this work?

¢ In this work, we intend to study the black hole shadows of Kerr de Sitter
space times for observers specifically located in the vicinity of the static
radius.

v

What is special about the static radius?

* On the static radius boundary, gravitational attraction due to the central
compact object and cosmic repulsion counterbalance each other.

* By the use of embedding diagrams it has been shown that in the vicinity of
the static radius, the geometry of de Sitter space-time is analogous to an
asymptotically flat space-time.

® Thus, in this work, we make use of this property (treating the vicinity of the
static radius as an analogue of asymptotically flat) and fix our observers in
this vicinity.
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Kerr de Sitter space time

In Boyer-Lindquist coordinates (t,r,0,¢), the Kerr-de Sitter Metric is given by )
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Kerr de Sitter space time

® The metric does not depend on t and ¢ hence possesses two killing
vectors.

* Roots of A, yields the horizons of this space time. This parameter is a
quartic polynomial, hence there are four roots.
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Kerr de Sitter space time

Geodesics in KdS space time.

The necessary geodesics for the study of black hole shadows are null
geodesics. The null geodesics in KdS space time are given as,

E
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Kerr de Sitter space time

The special case of null geodesics

The critical curve of the black hole shadow is formed null geodesics at a
constant radius., i.e spherical photon orbits.

How can spherical photon orbits be obtained?

R(r) =0, R,(r) =0, (12)

This condition yields,
L2r® (6a° (Ar*(BM + r) — 6M) + a*A°r® + 9r(r — 3M)?)
a2 (r (@A + 2Ar2 — 3) + 3M)?
r(a (6 — Ar?) +3r(r — 3M))

A= @t —gram & 14

n= : (13)

v

These two parameters are the constants of motion governing the motion of
spherical photon orbits.
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Kerr de Sitter space time

How does 7 govern the motion of spherical photon orbits?

When 7 > 0, the orbits move above and below the equatorial plane. At n =0,
they are confined on the equatorial plane, forming the equatorial circular
prograde and retrograde orbits.

Figura 1: A null geodesic at a constant radius.
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Thus, solving for r when n = 0 results in, J

I'oh+,Kkds = _2M(y -1 + 2\/M2((y —14)y+1) cos (E + Air) ) (15)

(y+1)2 (y+ 1) 3 3
2M(y — 1 M2((y — 14 1 K
Iph— ,Kds = — (y(_}'/_ 1)2) + 2\/ ((}E}"" 1;{ +1) cos (5) . (16)

I'oh+,kas forms the lower bound while r,n_ kqs forms the upper bound of the pho-
ton orbits at a constant radius. Thus the KdS photon region is the region with
I € [foht,kass Foh—Kds)-
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Kerr de Sitter Revisited space time

The Kerr-de Sitter revisited solution is defined by the metric,

— 22sin2 2 .2
dszz—(w>dt2+£—/\dr2+p2d02+wd¢2

P? 4
235|n 0(/’ +a — AA)dtd¢7 (17)
with,
4
AA=r2—2Mf+a2_ATr’ "
A= (r2 + 32)2 — A& sin® 0, (19)
P> =r’+ & cos’o. (20)

Two killing vectors and horizons.
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Kerr de Sitter Revisited space time

We obtain the null geodesics as, )
p2
EPA= VAN, (21)
P2 0
EPn = EVOn(0), (22)
2 2 3
0P s (arff+ a8 —aln—a )
P opé — , 23
Ep/\ Ap + sin® 6 (23)
2 2 2\ (2 2
Do = Cra)Cra—av) | g 2ge, (24)
E A
where,
Ra(r) = (rP + & — a\n)® — Da(mn + (W — a)°), (25)
OA(0) = 1a + & cos® 6 — N\; cot? 6. (26)
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Kerr de Sitter Revisited space time

Using the condition for spherical photon orbits, Ra(r) = Rx(r) = 0, we obtain, )

3r® (42 (Ar® — 3M) + 3r(r — 3M)?)
a2 (3M + 2Ar3 — 3r)?

_ 3a&M +2a°Nr® + 3a°r — 9Mr® +3r°
N a(3M 4 2Ar3 — 3r) '

(@7)

)

= -

hYA (28)

na and X are still constants of motion governing spherical photon orbits. Thus

the roots of na will yield the radii of equatorial circular prograde and retrograde
photon orbits.
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Kerr de Sitter Revisited space time

Solving for rinn =0,
M M2 (1 — 422N) i A
Toh.FKds = zon 3 +6 W cos (§ + ?) , (29)
&M M2 (1 — 422N) 3
I'oh— RKdS = 22N 13 + W cos (5) . (30)

Thus, the photon region in Kerr de Sitter Revisited space time exists in r €
[Foh+,RKdS > Foh—,RKdS]
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Celestial Coordinates
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Celestial Coordinates

How do we test that the celestial coordinates are correct?

Since the shadow is formed by the projection of the photon region on the
observers sky, then the critical curve of the shadow should exhibit the
behaviour of the corresponding spherical photon orbits.

Figura 2: Critical curve of the black hole shadow.
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Celestial Coordinates

Figura 3: Radius of Equatorial circular Prograde orbit, KdS

Eunice Omwoyo, Humberto Belic. 17



Celestial Coordinates
[e]e]e] le]e}

Celestial Coordinates

Figura 5: KdS black hole shadows for different values of a
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Figura 6: RKdS black hole shadows for different values of a
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Celestial Coordinates

Figura 7: Radius of Equatorial circular Retrograde orbit, KdS
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Celestial Coordinates

Figura 9: KdS black hole shadows for different A
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Quantitative Analysis of the shadows

Radius of curvature

A _ (0/(/')2 + 13/(,.)2)3/2
curvature a’(l’),B”(I') — ,B’(r)a”(r)

(35)

Figura 11: Points at which we calculate the radius of curvature
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Quantitative Analysis of the shadows

Quantitative Analysis of the shadows
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Tabela 1: Points evaluated for @ = 16°, a=0.5and A = 1.11 x 10~%m~2

For this value of A, the values are indistinguishable.
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points Kerr kds rkds
Ap(pas) 38.9617 38.9617 38.9617
Aa(pas) 38.9123 38.9123 38.9123
Rr(nas) 19.4318 19.4318 19.4318
Rp(pnas) 19.5096 19.5099 19.5099
Rgr(uas)  19.502 19.502 19.502

We model our values to M87
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Quantitative Analysis of the shadows

Tabela 2: Points evaluated for = 16°, a = 0.5 and A = 0.06m—2

points kds, (31,32) rkds, (33,34)

AB(nas)  38.6587 38.3582
Ao(pas) — 38.6533 38.267
Rr(nas)  19.2878 19.0882
Rp(nas)  19.4078 19.2278
Ra(nas)  19.4021 19.2221

For this value of A, the values are distinguishable, however note that this value
is not astrophysically relevant.
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Qualitative Analysis of the shadows

* Recently, the 2017 Event Horizon Telescope observations of M87 were
utilized and a constraint on the characteristic areal radius of the shadow
was obtained.

¢ |t was shown that the radius of the shadow must lie in the range [4.31M,
6.08M].

® We used this constraint on the shadow to constrain the black hole spin
and angle of inclination of our observer.
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Qualitative Analysis of the shadows

Figura 12: Excluded and permitted regions for a shadow cast by a Kerr-de Sitter black hole.
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Figura 13: Excluded and permitted regions for a shadow cast by a Kerr-de Sitter Revisited black hole.
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Qualitative Analysis of the shadows

* We observe that in both black holes, excluded regions appear at high
black hole spin a/M > 0.812311 and larger angles of inclination
6 > 0.532512 ~ 30.5107°.

e for small angles of inclination, no excluded regions occur.

® Thus, for a KdS and RKdS black hole, small angles of inclination pass the
constraints of M87* observations.
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Conclusion

* We have analyzed black hole shadows in Kerr-de Sitter and Kerr-de Sitter
Revisited space-times for observers located in the vicinity of the static
radius.

* We have investigated their qualitative and quantitative behavior.

* For astrophysically relevant observations (A = 1.11 x 107%2m? ), a Kerr,
Kerr-de Sitter and Kerr-de Sitter Revisited black hole shadow cannot be
distinguished.

* Finally, utilizing the constraint on the characteristic areal radius of the
shadow obtained by the Event Horizon Telescope collaboration, we have
constrained a Kerr-de Sitter and a Kerr-de Sitter Revisited black hole.

* We nd that, for a/M > 0.812311, large angles of inclination
0 > 0.532512 =~ 30.5107° are excluded from M87* observations in both
Kerr-de Sitter and a Kerr-de Sitter Revisited black hole.
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