Magnetic screening mass for neutral pions
 Luis Alberto Hernández Rosas

Workshop on Electromagnetic Effects in Strongly
Interacting Matter 2022.

In collaboration with: A. Ayala, R. Farias, A. Mizher, C. Villavicencio and R. Zamora

1 Debye mass

2 Magnetic Debye mass
3. Magnetic screening mass in the LSMq

44 Unifying our understanding. NJL \Longleftrightarrow LSMq

5 Results

William, Norberto and Ricardo showed results for the magnetic modification to the pole mass for different hadrons

Carlomagno, Gómez Dumm, Noguera and Scoccola, Physics. Rev. D106 (2022), 074002

LQCD and effective models results

G. S. Bali, B. B. Brandt, G. Endrödi and B. Glässle, Phys. Rev. D97, 034505 (2018)

A. Ayala, J. L. Hernández, L. A. Hernández, R. Farias and R. Zamora, Phys. Rev. D103 (2021) 5, 054038

S. Avancini, M. Coppola, N. Scoccola and J. C. Sodré, Physics. Rev. D104 (2021) 9, 094040

A. Das and N. Haque, Phys. Rev. D101, 074033 (2020)
H.-T. Ding, S.-T. Li, A. Tomiya, X.-D. Wang and Y.

Zhang, Phys. Rev. D104 (2021) 1, 014505

B. Sheng, Y. Wang, X. Wang and L.

 Yu, Phys. Rev. D103 (2021) 9, 094001H.-T. Ding, S.-T. Li, J.-H. Liu and X.-D.

Wang, Phys. Rev. D105, 034514 (2022)

The Coulomb potential is modified by collective effects as

$$
V(r)=Q \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{i \vec{p} \cdot \vec{p}}}{\vec{p}^{2}+\Pi\left(p_{0}=0, \vec{\rho}\right)}
$$

The position of the pole is called the Debye mass or the screening mass. Also the potential can be written as

$$
V(r)=e^{-m_{D} r} \frac{Q}{r},
$$

where $m_{D}=\left(r_{D}\right)^{-1}$.
Then, if we want to compute the screening mass at finite T, we need to solve the equation

$$
\left.\left[p_{0}^{2}-\vec{p}^{2}-\Pi\left(p_{0}, \vec{p}, T\right)\right]\right|_{\rho_{0}=0}=0
$$

Now, if we want to compute in general the screening mass at finite $|e B|$, we need to solve the equation

$$
\left.\left[p_{0}^{2}-p_{\perp}^{2}-p_{3}^{2}-m^{2}-\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)\right]\right|_{p_{0}=0}=0
$$

where $\vec{p}^{2} \rightarrow p_{\perp}^{2}+p_{3}^{2}$ and $\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)$ should be computed according the Lagrangian that we use.

$$
\begin{aligned}
& G_{\mathrm{c}}^{(2)} \equiv-\mathrm{O}=-\quad \text { Ø } \\
& +\lambda^{2}[\Omega Q+\underline{Q}+\cdots] \\
& +\lambda^{3}[0 \Omega+\underline{Q Q}+\ldots 0 \\
& +\underline{8}+\underline{8}+\underline{Q}]+\mathscr{0}\left(\lambda^{4}\right) \text {, }
\end{aligned}
$$

Renormalizable effective model to describe dynamics at low energies.

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(D_{\mu} \vec{\pi}\right)^{2}+\frac{a^{2}}{2}\left(\sigma^{2}+\vec{\pi}^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}\right)^{2} \\
& +i \bar{\psi} \gamma^{\mu} D_{\mu} \psi-g \bar{\psi}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right) \psi
\end{aligned}
$$

where $\vec{\pi}=\left(\stackrel{\pi}{\pi}_{\pi_{1}}^{+}, \pi_{2}^{-}, \stackrel{\pi}{0}_{\pi_{3}}^{\pi_{3}}\right)$, the model has two species of quarks represented by an $S U(2)$ isospin doublet ψ, and σ meson is a scalar included by means of an isospin singlet.

$$
D_{\mu}=\partial_{\mu}+i q_{f, b} A_{\mu}
$$

with

$$
A^{\mu}=\frac{B}{2}(0,-y, x, 0) .
$$

To allow for spontaneous symmetry breaking

$$
\sigma \rightarrow \sigma+v
$$

As a consequence of SSB

$$
m_{\sigma}^{2}=3 \lambda v^{2}-a^{2}, \quad m_{\pi}^{2}=\lambda v^{2}-a^{2}, \quad m_{f}=g v
$$

Meson interactions in the LSMq. Dashed lines are used to represent the neutral and charged pions, whereas double lines represent the σ.

Quark-meson interactions in the LSMq. Dashed lines represent the neutral and charged pions, whereas the double lines represent the σ. Solid lines represent the quarks. Thin solid lines represent the d quark, and thick solid lines represent the u quark.

Come back with the main topic. In order to obtain the screening mass for the NEUTRAL PION, we need to solve the equation

$$
\begin{gathered}
{\left.\left[p_{0}^{2}-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}-\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)\right]\right|_{p_{0}=0}=0} \\
\downarrow \\
\text { dynamical mass }
\end{gathered}
$$

Come back with the main topic. In order to obtain the screening mass for the NEUTRAL PION, we need to solve the equation

$V_{0} \equiv$ vacuum spectation value (changes as a function of le bl)

Come back with the main topic. In order to obtain the screening mass for the NEUTRAL PION, we need to solve the equation

$$
\begin{array}{r}
{\left.\left[p_{0}^{2}-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}-\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)\right]\right|_{p_{0}=0}=0} \\
{\left.\left[p_{0}^{2}-p_{\perp}^{2}-p_{3}^{2}-\left(\lambda v_{0}^{2}-a^{2}\right)-\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)\right]\right|_{p_{0}=0}=0}
\end{array}
$$

In order to obtain the vev, we compute the effective potential up to 1 -loop order.

$$
V^{\text {eff }}=V^{\text {tree }}+V_{\pi^{+}}^{1}+V_{\pi^{-}}^{1}+V_{\pi^{0}}^{1}+V_{\sigma}^{1}+\sum_{f} V_{f}^{1}
$$

where

$$
V_{b}^{1}=-\frac{i}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \ln \left[-D_{b}^{-1}(k)\right], \quad V_{f}^{1}=i N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr} \ln \left[S_{f}^{-1}(k)\right]
$$

with the propagators given by

$$
\begin{aligned}
& S_{f}(p)= \int_{0}^{\infty} \frac{d s}{\cos \left(\left|q_{f} B\right| s\right)} e^{i s\left(p_{\|}^{2}-p_{\perp}^{2} \tan \left(\left|q_{f} B\right| s\right)\right.}\left|q_{f} B\right| s \\
&\left.-m_{f}^{2}+i \epsilon\right) \\
& \times\left[\left(\cos \left(\left|q_{f} B\right| s\right)+\gamma_{1} \gamma_{2} \sin \left(\left|q_{f} B\right| s\right) \operatorname{sign}\left(q_{f} B\right)\right) \times\left(m_{f}+p_{\|}\right) \frac{\not p_{\perp}}{\cos \left(\left|q_{f} B\right| s\right)}\right] \\
& \quad D_{i}(p)=\int_{0}^{\infty} \frac{d s}{\cos \left(\left|q_{b} B\right| s\right)} e^{i s\left(p_{\|}^{2}-\rho_{\perp}^{2} \frac{\left.\tan \left|q_{b} B\right| s\right)}{\left|q_{b} B\right| s}-m_{b}^{2}+i \epsilon\right)} .
\end{aligned}
$$

In order to obtain the vev, we compute the effective potential up to 1-loop order.

$$
V^{\text {eff }}=V^{\text {tree }}+V_{\pi^{+}}^{1}+V_{\pi^{-}}^{1}+V_{\pi^{0}}^{1}+V_{\sigma}^{1}+\sum_{f} V_{f}^{1} .
$$

where

$$
\overbrace{V_{b}^{1}=-\frac{i}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \ln \left[-D_{b}^{-1}(k)\right]}^{\text {vacuum }+ \text { matter },} \overbrace{V_{f}^{1}=i N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr} \ln \left[S_{f}^{-1}(k)\right]}^{\text {Vacuumtmatter }}
$$

Introducing the vacuum stability conditions

$$
\begin{gathered}
\left.\frac{1}{2 v} \frac{d V^{\mathrm{vac}}}{d v}\right|_{v=v_{0}}=0,\left.\quad \frac{d^{2} V^{\mathrm{vac}}}{d v^{2}}\right|_{v=v_{0}}=2 a^{2}+2 m_{0}^{2} . \\
V^{\mathrm{vac}}=-\frac{\left(a^{2}+m_{0}^{2}+\left(\delta^{2}\right)\right.}{2} v^{2}+\frac{(\lambda+\delta \lambda)}{4} v^{4}-3 \frac{m_{0}^{4}}{64 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{0}^{2}}\right)\right] \\
-\frac{m_{\sigma}^{4}}{64 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{\sigma}^{2}}\right)\right]+2 N_{c} \frac{m_{f}^{4}}{16 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{f}^{2}}\right)\right] .
\end{gathered}
$$

Then, the effective potential is

$$
\begin{aligned}
V^{\text {eff }}(B) & =-\frac{\left(a^{2}+m_{0}^{2}\right)}{2} v^{2}-\frac{\delta a^{2}}{2} v_{0}^{2}+\frac{\lambda}{4} v^{4}+\frac{\delta \lambda}{4} v_{0}^{4}-3 \frac{m_{0}^{4}\left(v_{0}\right)}{64 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{0}^{2}\left(v_{0}\right)}\right)\right] \\
& -\frac{m_{\sigma}^{4}\left(v_{0}\right)}{64 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{\sigma}^{2}\left(v_{0}\right)}\right)\right]+2 N_{c} \sum_{f} \frac{m_{f}^{4}\left(v_{0}\right)}{16 \pi^{2}}\left[\frac{3}{2}+\ln \left(\frac{\mu^{2}}{m_{f}^{2}\left(v_{0}\right)}\right)\right] \\
& +\frac{2}{16 \pi^{2}}\left[2|e B|^{2} \psi^{-2}\left(\frac{1}{2}+\frac{m_{0}^{2}(v)}{2|e B|}\right)+\frac{3 m_{0}^{4}(v)}{8}-\frac{1}{2}|e B| m_{0}^{2}(v) \ln (2 \pi)\right. \\
& \left.-\frac{m_{0}^{4}(v)}{4} \ln \left(\frac{m_{0}^{2}(v)}{2|e B|}\right)\right]-\frac{N_{c}}{8 \pi^{2}} \sum_{f}\left[4\left|q_{f} B\right|^{2} \psi^{-2}\left(\frac{m_{f}^{2}(v)}{2\left|q_{f} B\right|}\right)+\frac{3}{4} m_{f}^{4}(v)\right. \\
& \left.-\frac{m_{f}^{4}(v)}{2} \ln \left(\frac{m_{f}^{2}(v)}{2\left|q_{f} B\right|}\right)-m_{f}^{2}(v)\left|q_{f} B\right|+m_{f}^{2}(v)\left|q_{f} B\right| \ln \left(\frac{m_{f}^{2}(v)}{4 \pi\left|q_{f} B\right|}\right)\right] .
\end{aligned}
$$

$$
\Pi(B, q)=\sum_{f} \Pi_{f \bar{f}}(B, q)+\Pi_{\pi^{-}}(B)+\Pi_{\pi^{+}}(B)+\Pi_{\pi^{0}}+\Pi_{\sigma} .
$$

with

$$
\begin{aligned}
&-i \Pi_{f \tilde{f}}(B, q)=-g^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma_{5} i S_{f}(k) \gamma_{5} i S_{f}(k+q)\right]+\mathrm{CC} \\
&-i \Pi_{\pi^{ \pm}}=\int \frac{d^{4} k}{(2 \pi)^{4}}(-2 i \lambda) i D_{\pi^{ \pm}}(k) .
\end{aligned}
$$

where the propagators are

$$
\begin{aligned}
& S_{f}(p)= \int_{0}^{\infty} \frac{d s}{\cos \left(\left|q_{f} B\right| s\right)} e^{i s\left(p_{\|}^{2}-p_{\perp}^{2} \tan \left(\left|q_{f} B\right| s\right)\right.}\left|q_{f} B\right| s \\
&\left.-m_{f}^{2}+i \epsilon\right) \\
& \times\left[\left(\cos \left(\left|q_{f} B\right| s\right)+\gamma_{1} \gamma_{2} \sin \left(\left|q_{f} B\right| s\right) \operatorname{sign}\left(q_{f} B\right)\right) \times\left(m_{f}+p_{\|}\right) \frac{\not p_{\perp}}{\cos \left(\left|q_{f} B\right| s\right)}\right], \\
& D_{i}(p)=\int_{0}^{\infty} \frac{d s}{\cos \left(\left|q_{b} B\right| s\right)} e^{i s\left(p_{\|}^{2}-p_{\perp}^{2} \frac{\tan \left(\left|q_{b} B\right| s\right)}{\left|q_{b} B\right| s}-m_{b}^{2}+i \epsilon\right)} .
\end{aligned}
$$

Boson contribution

$$
\begin{aligned}
\Pi_{\pi^{ \pm}} & =\Pi_{\pi^{ \pm}}^{\mathrm{vac}}+\Pi_{\pi^{ \pm}}^{B} \\
& =\frac{\lambda}{4 \pi^{2}}\left[\frac{m_{\pi}^{2}}{2} \ln \left(\frac{\mu^{2}}{m_{\pi}^{2}}\right)+\frac{m_{\pi}^{2}}{2} \ln \left(\frac{m_{\pi}^{2}}{2\left|q_{b} B\right|}\right)\right. \\
& \left.-\left|q_{b} B\right|\left(\ln \left(\Gamma\left(\frac{1}{2}+\frac{m_{\pi}^{2}}{2\left|q_{b} B\right|}\right)\right)+\ln (\sqrt{2 \pi})\right)-\frac{m_{\pi}^{2}}{2}\right]
\end{aligned}
$$

Fermion contribution

$$
\Pi_{f \bar{f}}=\Pi_{f \bar{f}}^{v a c}+\Pi_{f \bar{f}}^{B}
$$

Computed without any approximation \Rightarrow numerically.

We are ready to find the magnetic screening mass for the neutral pion by joining all the results showed

$$
\left.\left[p_{0}^{2}-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}-\Pi\left(p_{0}, p_{\perp}, p_{3},|e B|\right)\right]\right|_{p_{0}=0}=0
$$

\ldots Hold your horses! We can include one more ingredient in the recipe. \rightarrow Effective coupling constants.

$$
\lambda_{e f f}=\lambda\left(1+\Gamma_{\lambda}^{B}\right)
$$

$$
g_{e f f}=g\left(1+\Gamma_{g}^{B}\right)
$$

(c)

Magnetic corrections to the boson self-coupling

$$
\begin{gathered}
-i 6 \lambda \Gamma_{\lambda}^{B}=\int \frac{d^{4} k}{(2 \pi)^{4}}(-2 i \lambda) i D_{\pi^{-}}(k)(-2 i \lambda) \times i D_{\pi^{-}}(k+p+r)+\mathrm{CC} \\
\Gamma_{\lambda}^{B}=-\frac{\lambda}{12 \pi^{2}}\left[\ln \left(\frac{\mu^{2}}{2\left|q_{b} B\right|}\right)-\psi^{0}\left(\frac{\left|q_{b} B\right|+m_{\pi}^{2}}{2\left|q_{b} B\right|}\right)\right]
\end{gathered}
$$

Magnetic corrections to the boson-fermion coupling

$$
\begin{gathered}
\Gamma_{g}^{L L L}=\Gamma_{1, g}^{B}+\Gamma_{2, g}^{B}+\Gamma_{3, g}^{B} \\
g \gamma^{5} \Gamma_{1, g}^{B}=\int \frac{d^{2} s_{\perp} d^{2} t_{\perp}}{\pi^{2}|e B|^{2}} \frac{d^{4} k}{(2 \pi)^{4}}\left(\sqrt{2} g \gamma^{5}\right) i S_{d}\left(k_{\|}+p_{\|}, s_{\perp}\right)\left(-g \gamma^{5}\right) i S_{d}\left(k_{\|}+r_{\|}, t_{\perp}\right) \\
\times\left(\sqrt{2} g \gamma^{5}\right) i D_{\pi^{-}}\left(k_{\|}, k_{\perp}\right) e^{i \frac{2}{l e B \mid} \varepsilon_{i j}(s-q-t)_{i}(s-p-k)_{j}}+\mathrm{CC} \\
g \gamma^{5} \Gamma_{2, g}^{B}=\int \frac{d^{4} k}{(2 \pi)^{4}}\left(g \gamma^{5}\right) i S_{u}(k+p)\left(g \gamma^{5}\right) i S_{u}(k+r)\left(g \gamma^{5}\right) i D_{\pi^{0}}(k)+\mathrm{CC} \\
g \gamma^{5} \Gamma_{3, g}^{B}=\int \frac{d^{4} k}{(2 \pi)^{4}}(-i g) i S_{u}(k+p)\left(g \gamma^{5}\right) i S_{u}(k+r)(-i g) i D_{\sigma}(k)+\mathrm{CC}
\end{gathered}
$$

Effective coupling constants behaviour

LSMq
Where only the quark-antiquark pair fluctuation is considered, we have

$$
\left[-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}-\Pi\left(0, p_{\perp}, p_{3},|e B|\right)\right]=0
$$

which can be rewritten as follows

NJL

Using random phase approximation

$$
\begin{gathered}
\left(-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}\right)\left(1-\frac{\Pi\left(0, p_{\perp}, p_{3},|e B|\right)}{-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}}\right)=0 \\
\left(-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}\right)\left(1-\frac{g^{2} \tilde{\Pi}\left(0, p_{\perp}, p_{3},|e B|\right)}{-p_{\perp}^{2}-p_{3}^{2}-m_{\pi}^{2}}\right)=0 \\
\frac{g_{\pi \overline{9}}}{-p_{\perp}^{2}-p_{3}^{2}-m_{\Pi}^{2}} \longleftrightarrow 2 G
\end{gathered}
$$

$$
\frac{2 i G}{1-2 G \tilde{\Pi}\left(p_{0}, p_{\perp}, p_{3},|e B|\right)}
$$

It is interpreted as an effective meson propagator where the pole mass is obtained when p_{\perp} and p_{3} go to zero, and the screening mass is obtained when p_{0} goes to zero and p_{\perp} or p_{3} is finite. Then, the equation to solve is

$$
1-2 G \tilde{\Pi}\left(0, p_{\perp}, p_{3},|e B|\right)=0
$$

Both magnetic screening masses

¡Gracias!

lhernandez.rosas@izt.uam.mx luis.hr@xanum.uam.mx

