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Lecture 1.

• Decoupling at the classical level.

• Nonlocal form factors from Feynman diagrams.

• High energy (UV) and low-energy (IR) limits.
Quantum decoupling.

• Extracting form factors in semiclassical gravity.

• Derivation using heat-kernel solution.

• Renormalization group in the physical setting.

• On the running of cosmological (CC) and Newton constants.

• Implications for trace (conformal) anomaly.

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



Main references

Appelquist and Carazzone (AC) decoupling theorem.

T. Appelquist and J. Carazzone, PRD (1975) 2856.

A.V. Manohar, Effective Field Theories, Lectures, hep-ph/9606222.

A.O. Barvinsky and G.A. Vilkovisky, NPB 333 (1990) 471.

Ed. Gorbar & I.Sh. hep-ph/0210388, 0303124; 0311190 (JHEP).
Ed. Gorbar, G. de Berredo-Peixoto & Sh. 2005, and others.

Wagno C. e Silva and I.Sh., arXiv:2301.13291, JHEP

Pedagogical introduction

I.L. Buchbinder, I. Sh., Introduction to Quantum Field Theory with
Applications to Quantum Gravity, (Oxford Un. Press, 2021).

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



Decoupling at the classical level.

Consider propagator of massive field at very low energy (IR)

1
k2 + m2 =

1
m2

(
1 − k2

m2 +
k4

m4 + ...

)
.

In case of k2 ≪ m2 there is no propagation of a particle.

What about quantum theory, loop corrections?

Formally, in loops integration goes over all values of momen ta.

Is it true that the effects of heavy fields always become irrel evant
at low energies? E.g., the diagrams with external gravity in clude

(a) (b)
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Simplest example using Feynman diagram

Consider the analytic continuation of the Euclidean integr al

I4 =
1

(2π)4

∫
d4k

(k2 + m2)[(p − k)2 + m2]
.

We continue the dimension I4 → I2ω, making it analytic except
some points. In the vicinity of ω = 2,

I2ω =
1

2− ω
pole term + finite term + O(2− ω) term.

The purpose is to find the term with the pole at ω = 2 and the
finite part. Consider the representation

I2ω =
1

(2π)2ω

∫
d2ωk

(k2 + m2)[(k − p)2 + m2]

=

∫
d2ωk
(2π)2ω

∫
∞

0
dα1

∫
∞

0
dα2 e−α1(k

2+m2)−α2[(k−p)2+m2].

Changing the order of integrations and using Gaussian form o f
the integral over Euclidean momentum, we get
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I2ω =

∫
∞

0
dα1

∫
∞

0

dα2

(2π)2ω

( π

α1 + α2

)ω

e
α

2
2p2

α1+α2
−α2(p

2+m2)−α1m2

.

We will need the gamma function Γ(z) =
∫

∞

0
dt tz−1e−t

with Γ(2− ω) =

∫
∞

0

e−t dt
t1−w =

1
2− ω

− γ +O(2− ω) ,

Γ(1− ω) = − 1
2− ω

− 1 + γ +O(2− ω),

Γ(−ω) = 1
2(2− ω)

+
3
4
− γ

2
+O(2− ω) ,

and the volume of the m-dimensional sphere of radius R,

Vm =
π

m
2

Γ
(

m
2 + 1

) Rm.

This relation may be continued to a complex dimension 2ω.
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Using these formulas, after some efforts we arrive at

I2ω =
1

(4π)ω

[ 1
2− ω

− γ
] ∫ 1

0
dα[m2 + α(1− α)k2]ω−2.

Let us denote τ = k2

m2 and transform

[m2 + α(1− α)k2]ω−2 = (m2)ω−2 e(ω−2) log[1+α(1−α)τ ]

= (m2)ω−2
{

1− (2− ω) log
[
1 + α(1 − α)τ

]}
+ O

(
(ω − 2)2).

In this way, we arrive at

I2ω =
(m2)ω−2

(4π)ω

[ 1
2− ω

+ γ −
∫ 1

0
dα log [1 + α(1− α)τ ]

]
.

The integration gives

Y = −1
2

∫ 1

0
dα log [1 + α(1− α)τ ] = 1− 1

a
log

∣∣∣
2 + a
2− a

∣∣∣,

where a2 =
4k2

k2 + 4m2 −→
4�

�− 4m2 .
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Finally, we arrive at the complete expression for the integr al

I2ω =
µ2ω−4

(4π)2

[ 1
2− ω

+ γ + log
(4πµ2

m2

)
+ 2Y

]
.

This expression includes the following elements:

1. The divergences and the accompanying part with log(µ/m).

The correspondence of the coefficients of these two terms
enables one to construct the Minimal Subtraction scheme of
renormalization and the corresponding formulation of the
renormalization group equations.

2. Nonlocal form factor, i.e., in the simplest case, the expr ession
Y (�,m2), or Y (−k2,m2) in the momentum representation.

Upon subtracting divergences, this part remains and repres ents
the physical result.

Our purpose is to explore what is the behavior of the form fact or
in the high-energy (UV) and low-energy (IR) regimes. We shal l
see that there is a qualitative difference between the two li mits.
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An important detail about the divergent part is its universa lity.

The coefficient of the leading one-loop divergence does not
depend on regularization.

A. Salam, Phys.Rev. 84 (1951) 426.

One can establish the relation between, e.g., dimensional a nd
cut-off regularizations,

log
Ω2

m2 ←→ − µn−4

ε
, ε = (4π)2(n − 4) = 32π2(ω − 2),

We shall see that this universality can be extended to the
leading-log part of the nonlocal form factor, i.e., to the UV
limit of the finite part of the quantum correction.

Using the terms of renormalization group, the corresponden ce
between the dependence on µ2 and on k2 implies an equivalence
between Minimal Subtraction and Momentum Subtraction
regularization schemes in the UV.

However, this does not concern the low-energy limit, where t he
IR version of the form factor has no direct link to the diverge nce.
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Consider the form factor Y in the two limits:

1. UV regime k2 ≫ m2 .

a2 =
4k2

k2 + 4m2 =
4

1 + 4m2

k2

= 4
(

1− 4m2

k2 + . . .
)
,

In this case,

I2ω =
1

(4π)2

[
− 2

n − 4
+ log

(µ2

k2

)
+ constant

]
.

2. IR regime k2 ≪ m2. Then

Y = − 1
12

k2

m2 +
1

120

( k2

m2

)2
+ . . . .

This is the quadratic decoupling, similar to what was discov ered
in QED in 1975 by Appelquist and Corrazzone (AC).
There is no log(k2/µ2) to correspond 1/(n− 4).
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The derivation of the β-functions in the mass-dependent
scheme: one has to subtract the counterterm at the momentum
p2 = M2, where M is the renormalization point. Then,

βC = lim
n→4

M
dC
dM

= − lim
n→4

p
dC
dp

.

Example: a fermion loop effect in QED.
The Momentum-Subtraction scheme - based β-function reads

β1
e =

e3

6a3 (4π)2

[
20a3 − 48a + 3(a2 − 4)2 ln

(2 + a
2− a

)]
,

UV limit p2 ≫ m2 =⇒ β1 UV
e =

4 e3

3 (4π)2 + O
(m2

p2

)
.

IR limit p2 ≪ m2 =⇒ β1 IR
e =

e3

(4π)2 ·
4 p2

15 m2 + O
( p4

m4

)
.

This is the standard form of the Appelquist and Carazzone (AC )
decoupling theorem (PRD, 1977).
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Using the general mass-dependent expression, interpolati ng
between the UV and IR limits, one can plot the “running” of the
electric charge in QED.

e t( )
-2

t

Effective electron charge as a function of log(µ/µ0) for the
MS-scheme and ln(p/µ0) for momentum-subtraction scheme.

In the UV, i.e., in the high-energy limit, the unique differe nce is a
small shift of the initial value of the effective charge. How ever, in
the IR, there is a qualitative difference between the two plo ts.
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In the UV, the mass of quantum fermion is negligible,
this simplifies the form factor, and we arrive at

− 1
4e2

∫
d4x Fµν

[
1 + β̃ ln

(
�

µ2

)]
Fµν .

Here and always, the coefficient β̃ is proportional
to the coefficient of the logarithmic divergence.

With the mass-dependent terms, things are more complicated ,
See details in B. Gonçalves et al, PRD, arXiv:0906.3837

Γ̄
(1)
∼A2 = − e2

2(4π)2

∫
d4x Fµν

[ 2
3 ǫ

+ kFF
2 (a)

]
Fµν + ...

where kFF
2 (a) = Y

(
1 +

4
3a2

)
+

1
9
.

It is worth noting that there is also an interesting ambiguit y
called nonlocal multiplicative anomaly, but the last does n ot
qualitatively affect the Appelquist and Carazzone theorem .
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Semiclassical gravity
The calculation can be performed using Feynman diagrams and
linearized gravity, gµν = ηµν + hµν . It is sufficient to consider

(a) (b) (c)

In the semiclassical gravity (i.e., when matter is quantum
and gravity is classical), the third diagram (c) does not
emerge because there is an internal gravity line.

Both diagrams (a) and (b) contribute to divergences, but only
the first one (a) to the nonlocal form factors. Anyway, both
diagrams are relevant to establish correspondence between
divergences and the logarithmic form factors in the UV.

The main technical difficulty is to distribute the form facto r
into the four different terms in the effective action.
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Covariance and power counting arguments show that the
divergences belong to the fourth-derivative action

SHD = −
∫

d4x
√−g

{ 1
2λ

C2 +
1
ξ

R2 +
1
κ2 (R − 2Λ)

}
,

+ surface terms.

On the other hand, there are five tensor structures in gravity ,

Hµν,αβ(k ; η) = −
[
a1(k

2)δµν,αβk2 + a2(k
2)ηµνηαβk2

+ a3(k2)
(
ηµαkβkν + ηναkβkµ + ηµβkαkν + ηνβkαkµ

)]

+ a4(k2)
(
ηµνkαkβ + ηαβkµkν

)
+ a5(k2)kαkβkµkν

]
.

Omitting the details, it is possible to split nonlocal form f actor
into the parts corresponding to the terms in the effective ac tion.

Ed. Gorbar & Sh. JHEP (2003) hep-ph/0210388.

A. Codello and O. Zanusso, J.Math.Phys. (2013) arXiv:1203.2034.

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



The result of these calculations with nonlocal form factors ,
for the nonminimal real scalar with ξRϕ2, has the form

Γ̄vac =
1

2(4π)2

∫
d4x
√−g

{
m4

2

( 1
ǫµ

+
3
2

)
+ ξ̃m2R

[ 1
ǫµ

+ 1
]

+
1
2

Cµναβ

[ 1
60ǫµ

+ kW (a)
]
Cµναβ + R

[ 1
2ǫµ

ξ̃2 + kR(a)
]

R
}
,

kW (a) =
8Y

15 a4 +
2

45 a2 +
1

150
,

kR(a) =
(
ξ̃2 +

4− a2

3a2 ξ̃ +
16− 8a2 + a4

144a4

)
Y +

20− 7a2

2160 a2 +
1
18

ξ̃2,

where
1
ǫµ

=
1

2− w
+ ln

(4πµ2

m2

)
, ξ̃ = ξ − 1

6
,

a2 =
4�

�− 4m2 , Y = 1− 1
a

ln
1 + a/2
1− a/2

.

In the IR, logarithms disappear and the form factors become
local, i.e., we get a gravitational version of decoupling th eorem.
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Using the heat-kernel solution
Using Feynman diagrams is relatively complicated.

The calculations can be performed by using the heat-kernel
solution, i.e., by summing up the Schwinger-DeWitt series,
I. Avramidi, Sov.J.Nucl.Phys. 49 (1989).

A. Barvinsky & G.A. Vilkovisky, Nucl Phys. B333 (1990) 471.

Technically this approach is much simpler compared to using
diagrams and also provides higher level of universality.

Γ̄(1) = −1
2

∫
∞

0

ds
s

Tr K (s) ,

where the functional trace of the heat kernel is

Tr K (s) =
µ4−2ω

(4πs)ω

∫
d4x
√

g e−sm2

tr
{

1̂ + sP̂ + s2 [Rµν f1(−s�)Rµν

+ Rf2(−s�)R + P̂f3(−s�)R + P̂f4(−s�)P̂ + Ŝµν f5(−s�)Ŝµν
]}

.

It is important that the two approaches are equivalent.
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The elements of the heat-kernel solution are as follows:

f1(τ) =
f (τ) − 1 + τ/6

τ2 , f3 =
f (τ)
12

+
f (τ) − 1

2τ
, f4 =

f (τ)
2

,

f2(τ) =
f (τ)
288

+
f (τ) − 1

24τ
− f (τ) − 1 + τ/6

8τ2 , f5 =
1− f (τ)

2τ
,

where f (τ) =
∫ 1

0
dα eα(1−α)τ , τ = −s� .

One can integrate this out for massive theory and the result fi ts
perfectly with the one from the Feynman diagrams approach.

Ed. Gorbar & I.Sh., JHEP 02 (2003); 06 (2003), hep-ph/0303124., ...

S. Franchino-Viñas, T. de Paula Netto, I.Sh., O. Zanusso, PLB (2019)
arXiv:1812.00460.

In this way, the calculations were done for self-interactin g
scalars, fermions, massive vectors, antisymmetric fields, etc.

It also gave many extra outputs, such as nonlocal multiplica tive
anomaly, possibility to better explore ambiguities in conf ormal
(trace) anomaly for massless fields, etc.
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Back to the results: Consider the UV limit for the form factors in
the one-loop effective action, the part quadratic in curvat ures.

The classical terms plus the logarithmic corrections are

Γ
(1), UV
vac =

∫

x
Cαβρσ

[
a1 − β1 log

(
− �

µ2

)]
Cαβρσ

+ R
[
a4 − β4 log

(
− �

µ2

)]
R + . . . .

Here the beta functions are those of the Minimal Subtraction
scheme of renormalization, confirming the correspondence
with the Momentum Subtraction scheme in the UV limit.

In the IR, we assume p2 ≪ m2 for Euclidean momenta.
Asymptotically, the form factors do not have log’s, e.g.,

kW = − 1
840

p2

m2

(
1 +

1
18

p2

m2

)
+ . . . .

There is no logarithmic “running” and hence no direct relati on
between the dependence on momenta p and µ in the IR .
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In the gravitational sector, we meet Appelquist and Carazzo ne -
like decoupling, but only in the higher derivative sectors.
In the perturbative approach, with gµν = ηµν + hµν , we do not see
running for the cosmological and inverse Newton constants.
Why do we get βΛ = β1/G = 0 ?

Momentum subtraction running corresponds to the insertion of,
e.g., ln(�/µ2) formfactors into effective action.

Say, in QED: − 1
4e2 FµνFµν+

e2

3(4π)2 Fµν ln
(
− �

µ2

)
Fµν .

Similarly, one can insert formfactors into

Cµναβ ln
(
− �

µ2

)
Cµναβ .

However, such insertion is impossible for Λ and for 1/G,
because �Λ ≡ 0 and �R is a full derivative.

Further discussion:
Ed. Gorbar & I.Sh., JHEP (2003,2022); J. Solà & I.Sh., PLB (2009).
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How can we separate the gravitational effective action (EA)
into Λ- term, Einstein term and higher derivative terms?

The problem is nontrivial since finite part of EA is nonlocal
and everything looks mixed, from the first sight.

The most obvious prescription is to use a global scaling.

Consider such a scaling for the metric, λ = const,

gµν −→ gµνe2λ R −→ Re−λ, � −→ �e−λ, etc.

Different terms in the classical action scale differently,
∫

x
=

∫
d4x
√−g −→

∫

x
e4λ,

∫

x
R −→

∫

x
Re2λ,

∫

x
R2

... −→
∫

x
R2

..., etc.

It looks reasonable to use the same scaling rule for
“distributing” quantum corrections into different sector s.
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Example: the anomaly-induced EA in the covariant form.

Γind = Sc(gµν) +
ω

4

∫

x

∫

y
C2(x)G(x , y)

(
E4 −

2
3
�R

)

y

+
b
8

∫

x

∫

y

(
E4 −

2
3
�R

)

x
G(x , y)

(
E4 −

2
3
�R

)

y

− 3c + 2b
36

∫

x
R2(x).

C2 = R2
µναβ − 2R2

αβ + (1/3)R2 and E4 = R2
µναβ − 4R2

αβ + R2

are the square of the Weyl tensor and the integrand of the
Gauss-Bonnet (GB) topological term. G(x , y) is the Green
function of the Paneitz operator

∆4 = �
2 + 2 Rµν∇µ∇ν −

2
3

R�+
1
3
(∇µR)∇µ.

It is easy to see that all the induced action scales
exactly as the classical fourth-derivative terms.
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The reason for this global scaling is, of course,
that the origin of these nonlocal terms are in

Cµναβ ln
(
− �

µ2

)
Cµναβ

and alike. This term is always present in the massless
(in particular, in any kind of conformal) theory if there
are UV divergences. We note that both Weyl and the GB
divergences never cancel in “normal” theories.

In case of the cosmological term and the Einstein-Hilbert te rm,
correspondingly, the non-local structures would be, e.g.,

∫

x
Rµν

m4

�2 Rµν and
∫

x
Rµν

m2

�
Rµν .

However, these terms are not generated in a normal way
with the logarithmic form factor insertions.
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Comment on the apparent relation between form factors.
Starting from the full expression with the form factors,

Γ̄vac =
1

2(4π)2

∫
d4x
√−g

{
m4

2

( 1
ǫµ

+
3
2

)
+ ξ̃m2R

( 1
ǫµ

+ 1
)

+
1
2

Cµναβ

[ 1
60ǫµ

+ kW (a)
]
Cµναβ + R

[ 1
2ǫµ

ξ̃2 + kR(a)
]

R
}
,

kW =
8Y

15 a4 +
2

45 a2 +
1

150
, etc.

In the UV (only!) kW has a logarithmic factor log�.

Expanding the coefficient of this logarithm into the power
series in m2/�, in the second order we get our “desired”

∫

x
Rµν

m4

�2 log
(
− �

m2

)
Rµν .

However, by no means this is an “IR running” of the Λ- term.

Ed. Gorbar, I.Sh., arXiv:2203.09232 (JHEP).
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In the large-mass limit, one can always expand the Green
function in the series, like it is done in the classical theor y,

1
k2 + m2 =

1
m2

∞∑

n=0

(−1)n k2

m2 ,

that apparently guarantees the no-running of the cosmologi cal
constant term.

However, there is a loophole. There may be a re-summation of
the Green functions and EA, as in the anomaly-induced case.

As a result, there may be an infinite product of the terms like

R..
1
�2 R..

1
�

R.. × ... × 1
�

R...

These (and other possible) terms have a global scaling typic al
for the cosmological constant. And then there is its running .

Let us note that it is a nontrivial task to rule out this kind of
terms, as there is no calculational technique for doing this .
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Another view on the anomaly-induced action

Γind = Sc(gµν) +
ω

4

∫

x

∫

y
C2(x)G(x , y)

(
E4 −

2
3
�R

)

y

+
b
8

∫

x

∫

y

(
E4 −

2
3
�R

)

x
G(x , y)

(
E4 −

2
3
�R

)

y
− 3c + 2b

36

∫

x
R2(x).

We note that this action does not have Green functions of the
original scalars, fermions or vectors. Instead, there is a Green
function of the artificial Paneitz operator

∆4 = �
2 + 2 Rµν∇µ∇ν −

2
3

R�+
1
3
(∇µR)∇µ.

Regardless of this issue, the anomaly-induced action posse sses
full information about the UV behavior of one loop contribut ions,
at least in the fourth-derivative sector of the action.

Thus, we meet an example of a resummation in the nonlocal
terms in the effective action.
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Additional observations about trace anomaly

Similar situations hold for conformal scalar, fermion and v ector,
thus we mainly restrict the consideration by the scalar case .

Consider a legitimate nonlocal terms, e.g.,

Γ̄
(1)
W = −

∫
d4x
√−g β1 Cαβρσ log

(
− �

µ2

)
Cαβρσ .

Under the conformal transformation

gµν = ḡµν e2σ(x) ,
√−g CαβρσCαβρσ =

√
−ḡ C̄αβρσC̄αβρσ.

For the d’Alembertian operator, the leading part of the
transformation is

� = e−2σ(
�̄ + derivatives of σ

)
.

There is a useful relation

− 2√−g
gµν

δ A[gµν ]

δ gµν
= − 1√

−ḡ
e−4σ δ A[ḡµν e2σ]

δσ

∣∣∣∣
ḡµν→gµν ,σ→0

.
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Let us use the parametrization

gµν = ḡµν e2σ(x) ,
√−g CαβρσCαβρσ =

√
−ḡ C̄αβρσC̄αβρσ.

Obviously,

− 2√−g
gµν

δ

δ gµν

∫
d4x
√−g C2

αβρσ = 0.

On the other hand, the log. form factor changes the game:

− 2√−g
gµν

δ Γ̄
(1)
W

δ gµν
= β1 C2

αβρσ.

In a qualitatively similar way, we get for the Gauss-Bonnet t erm
E4 = R2

µναβ − 4R2
αβ + R2 ,

− 2√−g
gµν

δ Γ̄
(1)
E

δ gµν
= β2 E4.

We are close to arrive at the standard form

〈T µ
µ 〉 =

1
360(4π)2

(
3C2 − E4 + 2�R

)
.
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Local term and ambiguity

M. Asorey, E. Gorbar, I. Sh., hep-th/0307187, Class. Quant. Grav.

Consider a scalar field

S =

∫

x

1
2

{
(∇ϕ)2

+ m2ϕ2 + ξRϕ2
}
,

∫

x
=

∫
d4x
√−g.

Typically, there are two logarithmic form factors in the UV, but
with an important exception of ξ = 1/6. In this particular case,
in the UV limit m→ 0, we obtain in the R2- sector,

− 1
12 · 180(4π)2

∫

x
R2 .

Owing to the identity

− 2√−g
gµν

δ

δgµν

∫

x
R2 = 12�R .

this provides a perfect fit with �R in the conformal anomaly in
the point-splitting, ζ-regularization and most of other methods.
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Regularization ambiguity in the local term
Consider the Pauli-Villars regularization that was develo ped for
the YM theory.

A.A. Slavnov, Theor. Math. Phys. 33 (1977) 210.

M. Asorey and F. Falceto, Nucl. Phys. B327 (1989) 427.

We introduce the set of scalar regulators with masses mi ,
nonminimal parameters ξi , and indefinite Grassmann parities.

S(i)
reg =

∫

x

{1
2

gµν∂µ ϕi∂νϕi +
1
2

(
ξ̃i +

1
6

)
R ϕ2

i −
m2

i

2
ϕ2

i

}
,

The Pauli-Villars regularized effective action is defined a s

Γ̄(1)reg =

N∑

i=0

si Γ̄
(1)
i (mi , ξ̃i , n).

where Λ is an auxiliary cut-off, i = 0 is the original scalar
contribution. mi = µiM, M is the dimensional parameter of
regularization and µi are chosen to cancel all divergences.
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The use of PV regularization for constructing the second (af ter
dimensional) example of ambiguity in anomaly:

M. Asorey, E.V. Gorbar, I.Sh., hep-th/0307187, Class. Quant. Grav.

M. Asorey, W. C. Silva, I.Sh., P. Vale, arXiv:2202.00154, EPhJC.

The Pauli-Villars conditions for all (including the quadra tic and
quartic) divergences, have the form

N∑

i=1

si = −s0 = −1;
N∑

i=1

siµ
2
i = 0,

N∑

i=1

si ξ̃i = 0;

N∑

i=1

siµ
4
i = 0,

N∑

i=1

si ξ̃
2
i = 0.

The possible solutions to these conditions are

s1 = 1, s2 = 4, s3 = s4 = s5 = −2; µ2
1 = µ2

5 = 4,

µ2
2 = µ2

4 = 3, µ2
3 = 1; ξ̃i = µ2

i or ξ̃i ≡ 0.
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The anomaly derived in this way has the form

T = − 1
(4π)2

[ 1
120

C2 − 1
180

E +
( 1

180
− 12δ

)]
�R + ... ,

with δ =

N∑

i=1

si

(
ξi −

1
6

)2
ln µ2

i .

It is easy to see that δ vanishes if all Pauli-Villars field
regulators have conformal couplings ξi =

1
6 , i = 1, . . .N.

However, if the regulators are scalar fields with non-confor mal
couplings, we meet arbitrariness in the �R- sector of anomaly
and in the

∫
x R2 induced finite term in the effective action.

In this way, we can use the IR limit of the form factors, in the
massive case, to get the second example of the ambiguity of
the local term in the anomaly-induced effective action.
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First Conclusions

• The renormalization program in curved spacetime is a full
success if we are interested just in removing divergences.

However, what we really want is to extract the finite part of th e
effective action, Green functions, etc. This is what we need for
the applications, e.g., in cosmology.

• The derivation of nonlocal form factors in the fourth-deriv ative
sector of the theory shows a perfect agreement with the
divergences in the UV and the quadratic decoupling in the IR.

• The derivation of nonlocal form factors in the R and Λ
sectors meet serious difficulties and require qualitativel y new
methods of calculations which are not available right now.
The question of whether CC can be variable or not is open.

• All this concerns the theory of quantum matter on the
classical gravity background. The decoupling in quantum
gravity is much more complicated and less elaborated.
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