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Lecture 2.

• The main features of quantum gravity (QG) based on GR.

• Fourth-derivative quantum gravity.

• Higher than fourth derivative polynomial QG models.

• What we can expect as decoupling in the IR?

• Is quantum GR a universal theory of IR QG?

• Scalar model with four derivatives. Mixed diagrams.

• Renormalization group in quantum GR vs renormalizable
or superrenormalizable QG models.

• What we can expect from QG in the IR?
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Main references

Pedagogical introduction to quantum gravity (QG).

I.L. Buchbinder, I. Sh., Introduction to Quantum Field Theory with
Applications to Quantum Gravity, (Oxford Un. Press, 2021).

Some of the most important references for this lecture.

E.S. Fradkin & A.A. Tseytlin, NPB 201 (1982) 469.

J.F. Donoghue, gr-qc/9310024 (PRL); gr-qc/9405057 (PRD).

Wagno C. e Silva & I.Sh., arXiv:2301.13291, JHEP

Section “Effective Quantum Gravity” edited by C. Burgess and
J. Donoghue of the “Handbook of Quantum Gravity” (Editors
C. Bambi, L. Modesto and I. Shapiro, Springer Singapore (2023).

Many reviews by Donoghue, Burgess, and others.
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Renormalizability in the quantum gravity (QG) models.

Any QG theory starts from a covariant action of gravity,

S =

∫
d4x

√
−g L(gµν) .

L(gµν ) can be of GR, or another action, including with finite or
infinite number of derivatives, local or even nonlocal.

Gauge transformation x ′µ = xµ + ξµ. The metric transforms as

δgµν = g′
µν(x)− gµν(x) = −∇µξν −∇νξµ = Rµν , α ξα.

Covariance implies
δS
δgµν

Rµν , α ξα = 0.

There is a proof P.M. Lavrov & I.Sh., PRD, 1902.04687 that the
effective action is covariant, independent of the QG model,

δΓ(g)
δµν

Rµν , α ξα = 0,

This is called the covariant renormalizability.
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Power counting in QG

General definition, where p, d , n are numbers of loops,
derivatives acting on external lines, and vertices.

D + d =
∑

lint

(4 − rl) − 4n + 4 +
∑

ν

Kν with lint = p + n − 1.

As the first example consider quantum GR.

SEH = − 1
16πG

∫
d4x

√
−g R, Power counting: D + d = 2 + 2p.

At the 1-loop level we can expect the divergences like

O(R2
...) = R2

µναβ , R2
µν , R2 .

t’Hooft and Veltman; Deser and van Nieuwenhuisen, (1974); ...

At 2-loop level we have [Goroff and Sagnotti, NPB (1986).]

O(R3
...) = Rµν�Rµν , ... R3, RµνRµ

αRαν , RµναβRµν
ρσRµνρσ .

The last structure doesn’t vanish on-shell. This demonstra ted
that the theory of GR-based QG is non-renormalizable.
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Another natural choice is four-derivative model, because w e
need four derivatives anyway for quantum matter field.

Sgravity = SEH + SHD, SEH = − 1
16πG

∫
d4x

√
−g (R + 2Λ),

and SHD includes square of the Weyl tensor and R

SHD =

∫
d4x

√
−g

{
− 1

2λ
C2 − ω

3λ
R2 + surface terms

}
,

C2(4) = R2
µναβ − 2R2

αβ + R2/3 ,

Propagators of metric and ghosts behave like O(k−4) and we
have K4, K2, K0 vertices. The superficial degree of divergence

D + d = 4 − 2K2 − 4K0.

Dimensions of counterterms are 4, 2, 0.
This theory is renormalizable. K. Stelle, Phys. Rev. D (1977).
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However there is a price to pay: massive ghosts

Gspin−2(k) ∼ 1
m2

(
1
k2 − 1

k2 + m2

)
, m ∝ MP .

The tree-level spectrum includes massless graviton and mas sive
spin- 2 “ghost” with negative kinetic energy and a huge mass.

Particle with negative energy means instability of vacuum s tate.

Even Minkowski space is not protected from spontaneous
creation of massive ghost and many gravitons from vacuum.

Different sides of the HDQG problems with massive ghosts:

• In classical systems higher derivatives generate explodin g
instabilities at the non-linear level (Ostrogradsky, 1850).

• Interaction between ghost and gravitons may violate energy
conservation in the massless sector (Veltman, 1963).

• Ghost produce violation of unitarity of the S -matrix.
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The main issue is stability

Certainly, the unitarity of the S- matrix is not the unique
condition of consistency of the quantum gravity theory.

The most important feature is the stability of physically re levant
solutions of classical general relativity in the presence o f higher
derivatives and massive ghosts.

The problem is well explored for the cosmological backgroun ds.
Gravitational waves on de Sitter space (energy ≪ Mp):

A. A. Starobinsky, Let. Astr. Journ. (in Russian) (1983).

S. Hawking, T. Hertog, and H.S. Real, PRD (2001).
J. Fabris, A. Pelinson and I.Sh., NPB (2001).

J. Fabris, A. Pelinson, F. Salles and I.Sh., JCAP, arXiv:1112.5202.

More general FRW-backgrounds:

F. Salles and I.Sh., PRD, arXiv:1401.4583.
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More general cosmological backgrounds

1000 2000 3000 4000 5000 6000
t

- 6000

- 4000

- 2000

2000

4000

6000

h H t L

k = 0.44

k = 0.42

k = 0.40

k = 0.30

k = 0.20

50 100 150 200 250
t

- 150000

- 100000

- 50000

50000

100000

150000

h H t L
k = 0.50

Example: radiation-dominated Universe. There are no growi ng
modes until the frequency k achieves the value ≈ 0.5 in Planck
units. Starting from this value, we observe instability as a n
effect of massive ghost.

The anomaly-induced quantum correction is O(R3
....). Until the

energy is not of the Planck order of magnitude, these
corrections can not compete with classical O(R2

....) - terms.

Massive ghosts are present only in the vacuum state. We just d o
not observe them “alive” until the energy scale MP .
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Behavior at Planck or greater frequencies

The simplest possible equation is for the fourth-derivativ e
gravity without quantum (semiclassical) corrections,

1
3

....

h + 2H
...

h +
(

H2 +
M2

P

32πa1

)
ḧ +

1
6
∇4h
a4 − 2

3
∇2ḧ
a2 − 2H

3
∇2ḣ
a2

−
(

HḢ + Ḧ + 6H3 −
3M2

P
H

32πa1

)
ḣ −

[ M2
P

32πa1
− 4

3

(
Ḣ + 2H2

) ]∇2h
a2

−
[
24ḢH2 + 12Ḣ2 + 16HḦ +

8
3

...

H −
M2

P

16πa1

(
2Ḣ + 3H2

) ]
h = 0.

It is easy to note that the space derivatives ∇ and hence the
wave vector ~k enter this equation only in the combination

~q =
~k

a(t)
.

When Universe expands, each frequency becomes smaller!
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Filipe de O. Salles, Patrick Peter, I.Sh., On the ghost-induced
instability on de Sitter background. PRD (2018), arXiv:1801.00063

The qualitative conclusion is perfectly well supported by
numerical analysis, including the case when the semiclassi cal
corrections are taken into account.

The growth of the waves really stops at some point. At least in
the cosmological setting this may be a solution of the proble m.
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The verification of the general logic, that the first order sta bility
is sufficient for a higher order stability, can be done for the
Bianchi-I metric.
A. Salvio, PRD (2019), arXiv:1902.09557.
Simpliciano dos Reis, Gr. Chapiro, I.Sh. PRD (2019), 1903.01044.

ds2 = dt2 − a2
1(t)dx2 − a2

2(t)dy2 − a2
3(t)dz2,

where a1/2(t) = eσ(t) eβ+(t)±
√

3β
−
(t), a3(t) = eσ(t) e−2β+(t).

For small initial amplitudes and frequencies: a very good
correspondence between linear and exact numerical solutio ns.

This is a convincing, still very phenomenological approach .
What about further modifications of a fundamental theory?

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



One can include more than four derivatives,

S = SEH

+

∫
d4x

√
−g

N∑

n=0

{
ωC

n Cµναβ�
nCµναβ + ωR

n R�
nR

}
+O

(
R3

...

)
.

Simple analysis shows that this theory is superrenormaliza ble,
but the massive ghost-like states are still present.

For the real poles case:

G2(k) =
A0

k2 +
A1

k2 + m2
1

+
A2

k2 + m2
2

+ · · ·+ AN+1

k2 + m2
N+1

.

For any sequence 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1,
the signs of the corresponding terms alternate: Aj · Aj+1 < 0.

M. Asorey, J.-L. Lopez & I. Sh., IJMPhA (1997), hep-th/9610006.
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The general feature of (almost) all QG models
Particle contents is defined by the structure of propagator a nd
the last depends on up to the second-order in curvature terms ,

Sgen =

∫
d4x

√
−g

{
− 1
κ2 (R + 2Λ) +

1
2

Cµναβ Φ(�)Cµναβ

+
1
2

R Ψ(�)R + O(R3
...)

}
.

At least for the polynomial functions Φ(�) and Ψ(�) there
is always a massless graviton and also massive degrees of
freedom, which can be ghosts, tachyons or normal particles.

The question of our interest is what happens with the quantum
loops with these modes in the IR? Is there a decoupling?

The main hypothesis is that the IR limit in the QG models is
always the quantum version of GR (J. Donoghue, 1994).

However, there may be other options for the QG remains in the
IR, which can be ruled our only by a direct verification.
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There may be, in principle, other options for the QG “remains ”
in the IR, which can be ruled our only by a direct verification.

Do we need to make these calculations in such a complex theory
are higher derivative QG? In the QG case, we need to work with
scalar and tensor modes, gauge fixing, Faddeev-Popov ghosts ,
third (Nakanishi-Laudrup) ghost, etc.

A simplified version of the theory with qualitatively simila r
structure is the Antoniadis and Mottola model.

I. Antoniadis & E. Mottola, PRD 45 (1992) 2013.

This theory has the following relevant properties:

• Fourth derivative and renormalizable.
• Non-polynomial interactions.

• Admits effective theory in the IR limit.
• All this makes it a good toy model for QG.

S.D. Odintsov & I.Sh., Class. Quant. Grav. 8 (1991) L57.
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Classical action of the model results from the integration o f trace
anomaly, owing to quantum effects of conformal matter fields ,

Scf =

∫
d4x

{
γe2σ(∂σ)2 − λe4σ − θ2(�σ)2 − ζ

[
2(∂σ)2

�σ + (∂σ)4]},

where

θ2 = (2w + 3c), ζ =
(
2w + 2b + 3c

)
, γ =

3
8πG

, and λ =
Λ

κ
.

The coefficients w , b, c depend on the particle contents of the
original theory of conformal matter fields.

w =
1

120(4π)2 (Ns + 6Nf + 12Nv ),

b = − 1
360(4π)2 (Ns + 11Nf + 62Nv ),

c =
1

180(4π)2 (Ns + 6Nf − 18Nv ),

The IR sector includes Einstein-Hilbert and cosmological t erms,

SIR =

∫
d4x

{
γe2σ(∂σ)2 − λe4σ

}
.
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Using the standard algorithm for the fourth-order operator s, we
get the divergences in the “fundamental” four-derivative m odel

Γ̄
(1)
div = − 1

ε

∫
d4x

{5ζ2

θ4

[
�σ + (∂σ)2]2

+
γ

θ2

(3ζ
θ2 + 2

)
(∂σ)2e2σ

−
(8λ
θ2 − γ2

2θ4

)
e4σ

}
, where ε = (4π)2(n − 4). (1)

This is supposed to fit the UV limit of the nonlocal form factor s,
providing correspondence between MS (Minimal Subtraction )
and (physical) Momentum Subtraction renormalization sche mes.

The divergences of the effective theory have the form

Γ̄
(1)
div, IR = −1

ε

∫
d4x

{
1
2

[
�σ + (∂σ)2]2 − 8

3
Λ e2σ(∂σ)2 +

32
9
Λ2e4σ

}
. (2)

In agreement with the power counting, the fourth-derivativ e
counterterms emerge, as the theory is non-renormalizable.

Taking only lower-derivative terms, we arrive at the expres sion
to compare with the IR limit of the full theory form factors.
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Like the four-derivative QG, the Antoniadis and Mottola mod el
has a light mode and heavy mode propagating. The masses are

m2 =
8Λ
3
, M2 =

γ

θ2 .

Without the cosmological constant, the light mode is massle ss.

..

.

Propagators of light and heavy modes, and an example of the
mixed vertex. Since the theory is non-polynomial, the numbe r
of lines of each type in a vertex is not restricted.

At the tree level, the heavy mode collapses in the IR and
there is only the light field propagating. The question is
what happens in the IR with the loop corrections.

For the one-loop contributions to the propagators and
lowest-order vertices, we need only a few vertices.
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In the self-energy part, there are three types of the diagram s,
but only the bubble type contribute to the nonlocal form fact ors.

m

m

M

M

M

m

Three types of diagrams of the bubble type.

We already know that the first type of loop produce the form
factors which are pure logarithms. This is also expected in Q G,
for both quantum metric and the Faddeev-Popov ghost sectors .

The diagrams of the second type produce more complicated
form factors, which demonstrate usual quadratic decouplin g,
according to the Appelquist and Carazzone theorem.

The remaining question is what happens, in the IR, with the
contributions of the third type of diagrams.
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Other relevant diagrams.

m
M

m

Examples of other types of diagrams: snail and tadpole.

These diagrams are important in the sense they produce
logarithmic divergences, the same as bubble diagrams.

The total sum of these divergences is expected to fit the UV
limit, i.e., the logarithmic part of the form factors, produ ced
exclusively by the bubble diagrams.

In the IR, snail and tadpole type diagrams do not make relevan t
contributions to compare with the low-energy effective the ory.

All this is our expectation.

Do things really work in the described way?
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The contributions to the nonlocal form factors can be presen ted
in the form of the self-energy graphs

Σ = + − 2 ×

where G(2)
1-loop(p,−p) ∝ i

p2 − m2

(
Σ̄γ + Σ̄λ + Σ̃γλ

+ Σ̃λ2 +Σζ2 +Σγζ +Σγ2 + . . .
) i

p2 − m2 ,

The form factors in this case are relatively complicated.
The basic elements are

1
ǫ
≡ 1

2 − ω
− γE + ln(4π), a =

4m2

p2 , b =
M2 − m2

4m2

A =
√
(1 + ab)2 + a, c2 =

p2

p2 + 4m2 , d2 =
p2

p2 + 4M2 .

γE ≈ 0.577 is the Euler-Mascheroni constant.
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The explicit expressions for the form factors are rather
cumbersome compared to the single-mass loops.

As an example, one of the two shortest elements is

Σζ2(p) =
iζ2p4

(4π)2θ4

{
5
[

1
ǫ
+ ln

( µ2

m2

)]
− 1

4

[
9A2 − 5(ab)2 − 37

]

− 1
2(ab)2c5 ln

(1 + c
1 − c

)
− 1

2(ab)2d5 ln
(1 + d

1 − d

)

−
[

1
2
(ab)3 +

5
2

ab
(

ab +
a
2
+ 2

)
+

15a
4

(
1 +

1
4b

)

+ 5
(

2 +
3

4b
+

1
2ab

)]
ln(1 + 4b)

+
A5

2(ab)2 ln
[ (A + 1)2 − (ab)2

(A − 1)2 − (ab)2

]}
.

Things change if we consider the UV limit, p2 ≫ M2 ≫ m2. In this
case, the formulas are much simpler, as shown on the next page .
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ΣUV
ζ2 (p2 → ∞) =

iζ2p4

(4π)2θ4

{
5
[

1
ǫ
− ln

(
p2

µ2

)]
+ 3 − 15(M2 + m2)

p2

+
10(m4 + m2M2 + M4)

p4 ln
( p2

M2

)
+

35(M2 + m2)

6p4

+
40M2m2

3p4 +
10m6

p4M2 ln
(m2

M2

)
+O

(M6

p6

)}
,

ΣUV
γζ (p

2 → ∞) = − iγζp2

(4π)2θ4

{
3
[

1
ǫ
− ln

(p2

µ2

)]
+ 7 − 9(M2 + m2)

p2

− 6(M2 + m2)

p2 ln
( p2

M2

)
− 6m4

p2M2 ln
(m2

M2

)
+O

(M4

p4

)}
,

ΣUV
γ2 (p2 → ∞) =

iγ2

(4π)2θ4

{
2
[

1
ǫ
+ ln

(p2

µ2

)
+ 2 ln

( µ2

M2

)]

+5
4m2

M2 ln
(m2

M2

)
+O

(M2

p2

)}
.
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What should be expected:

In the UV regime, the leading logarithmic terms in the form
factor, ln

(
p2/µ2

)
, are proportional to the corresponding

divergences in the fundamental fourth-derivative theory.

The logarithmic dependencies of the Euclidean momentum
p and of the parameter of renormalization µ are exactly the
same in the UV regime, where the masses are irrelevant.

In the UV limit, there is a perfect correspondence between
Minimal Subtraction and Momentum Subtraction schemes.

What about the IR limit? In this case, p2 ≪ M2.
For the sake of simplicity, we can set m2 = 0.

Our expectation is a fit between UV limit in the form factors
of effective model and the remnants of the logarithmic form
factors in the IR limit of the fundamental model.
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Assuming m2 = 0, M2 ≫ p2, we get

ΣIR
ζ2(M2 ≫ p2)

∣∣∣∣
m2=0

=
iζ2p4

(4π)2θ4

{
5
[

1
ǫ
+ ln

( µ2

M2

)]

− 1
6

(
7 +

35p2

2M2 − 9p4

2M4

)
+

p4

2M4 ln
(M2

p2

)
+O

( p6

M6

)}
,

ΣIR
γζ(M

2 ≫ p2)

∣∣∣∣
m2=0

= − iγζp2

(4π)2θ4

{
3
[

1
ǫ
+ ln

( µ2

M2

)]
− 1

2
+

2p2

3M2

− p4

M4

[
7
20

− 1
2

ln
( p2

M2

)]
+O

( p6

M6

)}
,

ΣIR
γ2(M2 ≫ p2)

∣∣∣∣
m2=0

=
iγ2

(4π)2θ4

{
2
[

1
ǫ
+ ln

(
µ2

M2

)]
+

13
6

p2

M2

− p4

2M4

[
8
5
+ ln

( p2

M2

)]
+O

(
p6

M6

)}
.
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Qualitatively, the result can be summarized by a single figur e:

m

M ≫ m

IR limit

Wagno C. e Silva and I.Sh., Effective approach to the
Antoniadis-Mottola model: quantum decoupling of the higher
derivative terms, arXiv: 2301.13291, JHEP.

In this paper, it was also confirmed that the same “collapse”
of massive lines and the consequent decoupling in the form
factors coming from mixed diagrams, occurs also for the
three-point and four-point vertices.

This is a serious argument in favor of the universal IR limit,
something contested, e.g., in the polemic paper in 2008:

I.Sh., arXiv:0812.3521 (IJMPA).
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In the effective low-energy model, we meet, e.g.,

Σeff
γ2(p) =

ip4

(4π)2

{(1
2
− 5

4
a +

3
8

a2
)[

1
ǫ
− ln

( µ2

m2

)]

− 1
2c

(1
4

a2 − 1
c2 + 2

)
ln
(1 + c

1 − c

)
+
(

1 − 7
4

a +
1
2

a2
)}

.

To make the things simpler, consider the limit Λ = 0, p2 → ∞.

Then the expression reduces to

Σeff
γ2(p)

∣∣∣
Λ=0

=
ip4

2(4π)2

[
1
ǫ
− ln

(p2

µ2

)
+ 2

]
.

This UV-leading nonlocal contribution with ln
(
p2/M2

)
fits the

γ2 term in the IR regime of the “fundamental” theory.

All in all, our main expectations in the scalar version of hig her
derivative quantum gravity are successful. It is natural to ask
which kind of result should we expect in the models of QG.

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



Gauge and parametrization in quantum gravity

The UV “running” depends on divergences and the last may be
not universal. Indeed, there maybe dependence on the
gauge-fixing and parametrization. Typically,

St = SQG + Sgf + Sghost ,

where St = St (αi) and αi = (βk , γj). For instance,

Sgf =

∫

x
χµ Yµν(β2, β3, ...)χν , χµ = ∇λ φ

λ
µ − β1 ∇µφ

λ
λ .

The most general one-loop parametrization is close to

J. Gonçalves, T. de Paula Netto & I.Sh., arXiv:1712.03338, PRD.

gµν −→ g′
µν = gµν + κ

(
γ1 φµν + γ2 φgµν

)

+ κ2(γ3 φµρφ
ρ
ν + γ4 φρωφ

ρω gµν + γ5 φφµν + γ6 φ
2 gµν

)
,

where gµν is the background metric and φµν are quantum fields.

At one-loop, this is all possible ambiguity in the divergenc es.
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Gauge invariance in quantum gravity (QG)

To understand what we can expect in QG, one has to account for
the differences between Antoniadis and Mottola model and th e
fourth- and higher-derivative models of quantum metric. Th e
main difference is that in QG there are parametrization and
gauge dependencies in both fundamental and effective cases .

We use the general statement about the gauge-fixing and
parametrization independence of the on-shell effective action.

The difference between the divergences of two versions of th e
one-loop effective action, evaluated using different gaug e and
parametrization parameters αi and α0 is proportional to the
classical equations of motion

δΓ̄
(1)
div = Γ̄

(1)
div (αi)− Γ̄

(1)
div (α0) =

1
ǫ

∫

x
εµν fµν ,

where, in pure GR, εµν = Rµν − 1
2

gµν (R + 2Λ).
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In QG/GR one meets the divergences (can be proved local)

Γ
(1)
div =

1
ǫ

∫

x

{
c1 R2

µναβ + c2R2
αβ + c3R2 + c4�R + c5R + c6

}
.

and εµν =
1√−g

δS
δgµν

= Rµν − 1
2

(
R + 2Λ

)
gµν .

Therefore, in this case

fµν = b1Rµν + b2Rgµν + b3Λgµν + b4gµν�+ b5∇µ∇ν

and we arrive at

δΓ
(1)
div = Γ

(1)
div (αi) − Γ

(1)
div (α

0
i )

=
1
ǫ

∫

x

(
b1Rµν + b2Rgµν + b3Λgµν + b4gµν�+ b5∇µ∇ν

)
εµν ,

where the parameters b1,2,..,5 depend on the full set of
parametrization and gauge parameters αi .

Ilya Shapiro, Decoupling theorem and effective quantum gra vity May - 2024



Are there universal (invariant) beta functions? Obviously,
one of those is the coefficient of the Gauss-Bonnet term.

To derive another combination, we note that the coefficients in
the divergences vary according to

c2 → c2 + b1, c3 → c3 −
(
b2 +

1
2 b1

)
, c4 → c4 − b4,

c5 → c5 −
(
b1 + 4b2 + b3

)
Λ, c6 → c6 − 4b3Λ

2, c1 → c1.

The two gauge-fixing and parametrization invariants are

c1 and cinv = c6 − 4Λc5 + 4Λ2c2 + 16Λ2c3 .

Let us stress that, in the “usual” quantum GR, there are
no reasonably defined beta functions for the C2 and R2 terms.

Does this conclusion apply to other models of QG?
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In the fourth-derivative QG, local divergences have the for m

Γ
(1)
div =

1
ǫ

∫

x

{
c1 R2

µναβ + c2R2
αβ + c3R2 + c4�R + c5R + c6

}
.

However, in this case, the classical equations of motion are also
four-derivative. Therefore, in this case,

δΓ̄
(1)
div = Γ̄

(1)
div (αi )− Γ̄

(1)
div (α0) = − 1

ǫ

∫

x
εµν fµν ,

with fµν(αi) = gµν f (αi ).

Here f (αi ) is an arbitrary dimensionless function of the
parameters of gauge fixing and metric parametrization.

The gauge/parametrization dependence of the divergent par t
is controlled by the “conformal shift” of the classical acti on

Γ
(1)
div (αi) − Γ

(1)
div (α

0
i ) = f (αi )

∫
d4x gµν

δS
δgµν

.

In the conformal model of QG, the r.h.s. vanishes owing to
Noether identity for this symmetry. Generally, this isn’t t he case.
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In this way, we arrive at

Γ
(1)
div (αi) − Γ

(1)
div (α

0
i ) = f (αi )

∫

x

{2ω
λ

�R − 1
κ2 (R + 4Λ)

}
.

These three divergent coefficients depend on the the gauge
fixing and parametrization, while other three are invariant .

Furthermore, there are two gauge-invariant combinations o f
the coefficients of Einstein-Hilbert and cosmological term s.

An important consequence is that, in the fourth-derivative
model, there is a well-defined UV (in fact, for this particula r
theory, this means trans-Planckian energy scale) running
of the coefficients of the Gauss-Bonnet, C2 and R2 terms.

On top of this, there is a single parametrization- and
gauge-invariant combination of the beta functions for the
Newton constant and cosmological constant.

This combination is the beta function of the dimensionless
ratio GΛ. This parameter and λ, ω, ρ have well-defined runnings.
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Consider UV running in quantum GR and fourth-derivative QG.

• In quantum GR there is only one well-defined on shell
renormalization group equation.

µ
dγ
dµ

= − 29
5(4π)2 γ2, γ = 16πGΛ.

This can be seen as an indication of asymptotic freedom, but
this is a kind of exaggeration, as it is on shell.

E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B201 (1982) 469.

The invariant running can be met only using the
Vilkovisky–DeWitt (VdW) scheme in QG.

G.A. Vilkovisky, Nucl. Phys. B234 (1984) 125.

B.S. DeWitt, The effective action, (1987).

Indeed, there are invariant equations. But not in a usual QFT .

T. Taylor and G. Veneziano, Nucl. Phys. B 345 (1990).

B. Giacchini, T. de Paula Netto, I.Sh., JHEP (2020), 2009.04122.
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• On the contrary, in the fourth-derivative QG

S = −
∫

x

{ 1
2λ

C2 − 1
ρ

E4 +
1
ξ

R2 − 1
κ2 (R − 2Λ)

}

there are well-defined renormalization group equations.

(4π)2 dρ
dt

= − 196
45

ρ2 , (4π)2 dλ
dt

= − 133
10

λ2 ,

(4π)2 dξ
dt

= − 10λ2 ξ2 + 5λ ξ − 5
36

.

In this case, we certainly have asymptotic freedom for the
effective charge λ and the UV stable fixed point for the ratio ξ/λ.

I.G. Avramidi and A.O. Barvinsky, PLB 159 (1985) 269
(with several subsequent verifications).

There is one more difference between the running in the two
models of QG. The energy scales where the two kinds of running
can be applied are very much different.
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Thus, the ambiguities in in the fourth-derivative QG model a nd in
quantum GR are qualitatively different. The question is wha t we
can expect from the decoupling in this situation?

The answer can be provided only by the explicit and
well-checked calculations, including with (at least) some
of the metric parametrization and/or gauge ambiguities.

However, what do we know before doing these, extremely
difficult and complicated, calculations?

The two main working assumptions are:

• The GR is a universal limit of QG in the IR. For a while, this
was checked only for a four-derivative scalar Antoniadis an d
Mottola model, and it was found correct.

• The decoupling of the mixed diagrams follows the same
pattern in the scalar model and in “real” QG.
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If both things are true:

• In the UV, the masses of the extra degrees of freedom are
irrelevant. We expect a perfect fit between Minimal Subtract ion
and Momentum Subtraction renormalization schemes.

• In the IR, there will be a “mess”, in the sense that those
beta functions which can be calculated, are expected to be
ambiguous and have no physical meaning.

The unique well-defined beta function in the IR corresponds t o
the dimensionless ratio of the Newton constant G and Λ.

Unfortunately, this is exactly the part which cannot be expl ored
using Feynman diagrams. Those are certainly “bad news”, but
the positive aspect is that we can clearly see what we have to
calculate and how we can check the general statements.

E.S. Fradkin & A.A. Tseytlin, NPB 201 (1982) 469.

I.Sh. & A. Jacksenaev, PLB 324 (1994) 284. ...
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Conclusions

• Effective approach is our simplest option for QG.

Assuming effective QG means we are forced to give up from the
main target of QG, i.e., from the describing QG in the deep UV,
explanation (or removal) of singularities and alike.

• Still, it is very important for us to have “correct” and
understandable results, as this would mean we can make
solid statements, maybe one day being compared with
some kind of observational data.

• The decoupling is a fruitful concept, with the solid basis
formed by the Appelquist and Carazzone theorem. This theore m
was extended to curved space, to mixed diagrams and, for a
while, the results were always confirming the general concep ts.

• Using general theorems about renormalization, we can see
what is the expected fit between fundamental and effective QG
theories in the UV and in the IR. As usual, general arguments i n
QG cannot replace real calculations, still to be done.
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