Workshop on Dynamical Processes on Complex Networks

Self-sustained activity and intermittent synchronization in balanced networks

Fernando da Silva Borges

SUNY The State University of New York Center for Mathematics, Computing and Cognition - UFABC 105 Group Science - State University of Ponta Grossa

Laboratory of Neurogenetics - UFABC Laboratory of Neurophysiology - USP

< 🕁 🤷 P M 🏠

1.6 mm 2.01mm

5 Seconds

SUNY The State University of New York

Recent works

Experimental Networks and

Computational modeling

Hodgkin-Huxley model or conductance-based model (Nobel 1963): Action potential $C_m \frac{dV_i}{dt} = I - \overline{g}_K n^4 (V_i - V_K) - \overline{g}_{Na} m^3 h (V_i - V_{Na}) - \overline{g}_l (V_i - V_l)$ +40 Na⁺ ions in Voltage (mV) K⁺ ions out Failed Threshold $C \stackrel{\perp}{=}$ initiations Resting state Stimulus 5 $\top V_K$ V_{Na} Vi Hyperpolarizati 0 Time (ms) Adaptive exponential integrate-and-fire model: t (ms) 400 $C\frac{dV}{dt} = -g_L(V - E_L) + g_L\Delta_T \exp\left(\frac{V - V_T}{\Delta_T}\right)^{\mathbb{R}}$ (d) V (mV) 300 $\tau_w \frac{dw}{dt} = a(V - E_L) - w$ t (ms) (Vd) q Low computational cost V (mV) 100 Problems related to neural network t (ms) V(t) Describes biological patterns (Micro and Macro) 0 -70 -60 -40

 V_r (mV)

≻

Spiral waves in IF model of CA1

Microcircuit Reconstruction

Bulletin of the World Health Organization:

- . Over 85 million people suffer from neurological diseases;
- . ~ 50 million have epilepsy;
- . The most common form is temporal lobe epilepsy (TLE)
- . TLE presents high refractoriness to pharmacological treatment (~60%)
- . What happens in the brain activity during an epileptic seizure?

Data from human hippocampal slices

Buchin et al. ENEURO, 2018. Reyes-Garcia et al. Scientific Reports, 2018.

epileptic neurons

Modelling epileptic seizures

- . The pilocarpine model of temporal lobe epilepsy
- Pilocarpine acting through muscarinic receptors, causes an imbalance between excitatory and inhibitory transmission resulting in the generation of Status epilepticus

In vivo

In vitro

Epileptic seizure

. How neuronal systems transit between these regimes?

Bistate firing patterns

•

- I. Asynchronous firing (spikes)
- II. High synchronous firing (bursts)

Resting state

1500

Seizure (Pilo)

Asynchronous firing in Rat

- . Mean Fire Rate ~ 1 Hz
- . No External Noise
- . Self-Sustained Activity (SSA)
- (a) 1 50 100 100 (b)

Self-sustained activity of low firing rate in balanced networks

F.S. Borges ^{a,*}, P.R. Protachevicz ^b, R.F.O. Pena ^c, E.L. Lameu ^{d,e}, G.S.V. Higa ^a, A.H. Kihara ^a, F.S. Matias ^{f,g}, C.G. Antonopoulos ^h, R. de Pasquale ⁱ, A.C. Roque ^c, K.C. Iarosz ^j, P. Ji ^{k,l}, A.M. Batista ^{b,m}

From Asynchronous firing (spikes) to High synchronous firing (bursts)

Increase the excitatory connection probability and synaptic conductance

Modelling Epileptic Networks

- Traub and Wong have proposed which epileptic synchronized burst are possible due three reasons:
- (i) the capability of neurons to firing in burst,
- (ii) the strong synaptic excitation, and
- . (iii) the **relative disinhibition**
- Epileptic and normal neuronal activity are support by the same physiological structure
- How neuronal systems transit between these regimes?

Inhibitory Effect on Synchronous Behavior

- The unbalance between excitation and inhibition generates synchronized bursts.
- Two types of loss of inhibition:
 - Decrease in synaptic strength (relative inhibitory synaptic conductance);
 - Dead of inhibitory neurons (fraction of inhibitory neurons).

- Synchronization in function of **g** (relative inhibitory synaptic conductance) and **gexc** (excitatory synaptic conductance).
- The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist.

How epileptic seizures are triggered?

Frontiers in Computational Neuroscience

Mean Seizure Duration after and Jürgen Kurths 10,11* applying SCP randomly Square (Asynchronous initial conditions) в Α 400 **Current Pulse** (bA) 350 Nonepileptic region Epilepsy (Bistable region) 2 300 250 500 500 >10s С D 400(Vd) 350 M 300 400 400 300 300 Time of I Time of I 250 -50 0.5s -60 -40 V_1 (mV) 200 200 100 100 0 0 50 100 150 200 250 0 50 100 150 200 250 0 Amplitude of I Amplitude of I

Bistable Firing Pattern in a Neural Network Model

Paulo R. Protachevicz¹, Fernando S. Borges², Ewandson L. Lameu³, Peng Ji^{4,5}, Kelly C. Jarosz⁶, Alexandre H. Kihara², Ibere L. Caldas⁶, Jose D. Szezech Jr.^{1,7}, Murilo S. Baptista⁸, Elbert E. N. Macau³, Chris G. Antonopoulos⁹, Antonio M. Batista^{1,7}

FIGURE 3 Phase space (w_1, V_1) (A,C) and time evolution of w_1 (B,D) for spikes (blue) and burst activity (red). The gray regions correspond to $dV_1/dt < 0$ and the black line represents $dV_1/dt = 0$ (V-nullcline).

Check for

Intermittency properties in a temporal lobe epilepsy model

F.S. Borges ^{a,b,*}, E.C. Gabrick ^c, P.R. Protachevicz ^d, G.S.V. Higa ^{b,e}, E.L. Lameu ^f, P.X.R. Rodriguez ^{b,g}, M.S.A. Ferraz ^b, J.D. Szezech Jr. ^{c,h}, A.M. Batista ^{c,d,h}, A.H. Kihara ^{b,*}

And about Ion Channels?

Article The Roles of Potassium and Calcium Currents in the Bistable Firing Transition

Fernando S. Borges ^{1,2}, Paulo R. Protachevicz ³, Diogo L. M. Souza ⁴, Conrado F. Bittencourt ⁴, Enrique C. Gabrick ⁴, Lucas E. Bentivoglio ⁴, José D. Szezech, Jr. ^{4,5}, Antonio M. Batista ^{4,5}, Iberê L. Caldas ³, Salvador Dura-Bernal ^{1,6} and Rodrigo F. O. Pena ^{7,8,*}

Figure 2. Firing pattern for different I_{M} , I_{T} , and I_{L} conductances. (A) Firing rate in colored (g_{T}, g_{L}) diagram for $g_{M} = 0.03 \text{ mS/cm}^{2}$. (B) The same as (A) for the CV. (C) Firing rate in colored (g_{M}, g_{L}) diagram for $g_{T} = 0.4 \text{ mS/cm}^{2}$. (D) The same as (C) for the CV. (E) Exemplar voltage traces considering different values of g_{M} , g_{L} , and g_{T} , where each parameter combination is shown atop and V = -85 mVbefore the depolarizing pulses. Other parameters are the same as Figure 1 with I = 200 pA.

Extracellular recording and stimulation

Group	Amplitudes (µA)	Frequencies (Hz)
Training	50, 100, 200, 400	5, 10, 15, 20, 40, 140
Testing	50, 100, 200, 400	1, 7, 15, 30, 90

Check for updates

OPEN ACCESS

James Courtney Knight, University of Sussex, United Kingdom

REVIEWED BY Srikanth Ramaswamy, Newcastle University, United Kingdom Mauricio Girardi-Schappo, University of Ottawa, Canada

*CORRESPONDENCE Fernando S. Borges fernandodasilvaborges@gmail.com

Large-scale biophysically detailed model of somatosensory thalamocortical circuits in NetPyNE

TYPE Original Research

PUBLISHED 22 September 2022

DOI 10.3389/fninf.2022.884245

Fernando S. Borges^{1,2*}, Joao V. S. Moreira¹, Lavinia M. Takarabe², William W. Lytton^{1,3,4} and Salvador Dura-Bernal^{1,5*}

Morphology placement

S1 model: LFP of 8k neurons (25%), running 15 sec simulations

Simulations: numprocs=1680, cell connection time = 3830.37 s, run time = 2052.19 s (15 sec), Total time = 7521.19 s

Human data: 64 events in 1200 sec ~ 17 in 300 sec

S1 model: 15 events in 300 sec

- In [19]: from ripple_detection import Karlsson_ripple_detector
- In [20]: filtered_lfps = filter_ripple_band(lfps2)
 Karlsson_ripple_times = Karlsson_ripple_detector(
 time, filtered_lfps, speed, SAMPLING_FREQUENCY

display(Karlsson_ripple_times)

100

6480

6500 Time (ms)

Karlsson, M.P., and Frank, L.M. (2009). **Nature Neuroscience** 12, 913-918.

Acknowledgment

