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Brain

The central organ of the human
nervous system.

It controls most of the activities of
the body, processing, integrating,
and coordinating the information it
receives from the sense organs, and
making decisions as to the

instructions sent to the rest of the
body.

Malleable

Adapt to needs.

Stable

Do not harm the functions




Brain
Plasticity

Neuroplasticity or brain plasticity s
defined as the ability of the nervous
system to change its activity in response to
intrinsic or extrinsic stimuli by reorganizing
its structure, functions, or connections. A
fundamental property of neurons is their
ability to modify the strength and efficacy
of synaptic transmission through a diverse
number of activity-dependent
mechanisms, typically referred to as
synaptic plasticity.




Neuron

Dendrites: receive or transmit
information from/to other
neuronal cells.

Axon: transmission of nerve
impulses.

Cell body

Within a nervous system, a neuron or nerve cell is
an electrically excitable cell that fires electric signals
called action potentials across a neural network. Neurons
communicate with other cells via synapses, which are
specialized connections that commonly use minute
amounts of chemical neurotransmitters to pass the
electric signal from the presynaptic neuron to the target
cellthrough the synaptic gap.

https://doi.org/10.1590/S1806-11173721787
Rev. Bras. Ens. Fis. 37 (2) * Jun 2015
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Neuron

Cell Body - Cortex

Axon —white matter

Dendrites

Cell body

https://doi.org/10.1590/S1806-
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Neuron

Dendrites: receive or transmit
information from/to other
neuronal cells.

Axon: transmission of nerve
impulses.

Chemical synapses

Neurotransmitters

Electrical synapses

Electrical impulses and
communication

junctions
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J. Konorski

Conditioned reflex occurs from changes in neuronal
synapses.

Time line

Plasticity
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Time line

Plasticity

D. Hebb

Synapses used more frequently ' @

are strengthened as a result of

the physiological adaptation of
the neurons involved.
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Recovery frominjuries and

microinjuries

Plasticity

Brain plasticity happens all the
time

31015926

Sensory deprivation
Suedfeld, P, Turmer, J W, Fine, TH. (Eds) (1090) Restrcted Response to external stimuli

Environmental Stimulation: Theoretical and Empirical Developments
in Flotation REST Springer. Spinger-Verlag [SBN 0-387-07348-6


https://pt.wikipedia.org/wiki/Especial:Fontes_de_livros/0387973486

Dendrites

Presynaptic neuron Post-synaptic neuron

Rev. Bras. Ens. Fis. 37 (2) * Jun 2015 ( https://d0i.org/10.1590/S1806-11173721787 )

A NEUROPHYSIOLOCICAL POSTULATE

Let us assume then that the persistence or repehition of a re-
verberatory activity (or “trace”) tends to induce lastng cellular
changes that add to its stabihty The assumption ® can be pre-
cisely stated as follows When an axon of cell A is near encugh
o to excite a cell B and repeatedly or persistently takes part in

firing o, some growth process or metabolic change takes place
wn one or both cells such that A's efficiency, as one of the cells
firing B, is increased

Hebb, D. O. (1949). The organization of behavior. New York: Wiley (pag 62)

= e =W om - . = & o=

https:/[pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
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Plasticity

Synapses

Long Term Potentiation
(LTP)

Long Term Depression
(LTD)

Synaptic

rearrangements

A

Structure modification

The same number of connections
Rearrangementin synapses
Synapse/dendrites sprouting
Synapse/dendrites elimination
Migration and neurogenesis

. Receptors and neurotransmitters: number
>4 modified

. Reduction of receptors - synaptic weakening
Increasein receptors - synaptic strengthening
Excitatory (eSTDP) and inhibitory synapses (iSTDP)

A )
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Our main goal is to show that spike timing-dependent
Splke timing-dependent plasticity of excitatory and inhibitory synapses induces

. . . non trivial topologiesinthe plastic brain.
plasticity induces
non-trivial topology
1n the brain

Initial networks  of
neurons fully connected, «—»
evolve to a non trivial
complexnetwork.

Consequently, this non-
trivial topology alters the
synchronous behavior

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

We have considered: Initial network with a global
coupling, with chemical synapses where the
connections are unidirectional, and the local
dynamics is described by the Hodgkin—Huxley
model
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Model
Hodgkin-Huxley
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The excitatory eSTDP is given by

At; =0 Aty

= I3
Atu < 0. -

— ff = [pems — Cpre.

AF . A} (‘Xp(—.‘i[v,"r]‘).
VT | =Azexp(Aty/T2),

Fig. 1(a): result obtained forA, =1.0,A, =0.5,T, =1.8 ms, and t, =6.0 ms.

The green dashed line: denotes the At; value at which the curves of potentiation and
depression intersect.

The inset in Fig. 1(a) shows that for |At,| < 1.8 ms the potentiation of g;is bigger than the
depression.

iISTDP (inset in Fig. 1(b)) the potentiation ofcsij is bigger than the depression for |At,| > 9.8 ms.

a’ |Atglaty” " exp{—i| Atgl),

ﬂ._ﬂ'._. =

Enamm

g, - scaling factor accounting for the amount of change in inhibitory conductance
induced by the synaptic

9norm = B B €xp(-P) is the normalizing constant.

Fig. 1(b) exhibits the result obtained from Eq. (14)

As a consequence, 10; > o for at; > 0, and 10, < o for At; < 0. The initial inhibitory synaptic
weights o;; are normally distributed with mean and standard deviation equal to oy,.

Then, the coupling strengths are updated according to Eq. (14), where o; — 0;;+10-310;;
The updates for €ij and oij are applied for the last postsynaptic spike.
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Fig.2(a) shows the mean order parameter (R) that is calculated for di
fferentinitial conditions.

Function of the inhibitory coupling strength o, for a neural network
with excitatory and inhibitory synapses. Case without STDP (black
circles)and STDP (red triangles).

For €y equal to 0.25 and varying o,,, we do not observe a significant
alteration of the R value without STDP - initially the network has an
all-to-all topology.

Increase of o), and present a large standard deviation. This standard
deviation occurs due to the existence of different synchronization
states.

The upper border of the inhibitory coupling 26 and the different
initial conditions are important to change the dynamics of the
network with STDP and without external perturbation.

This is verified by means of the decay of the R values and the large
standard deviation bar.
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In Fig. 2(b) and (c): oy, = 0.675, for different configurations of the initial
networks and T = 100 ms.

The black line shows the case in which the network goes to a
desynchronized state (R = 0.1), whereas the red line exhibits the case
of a network that presentssynchronous behavior (R = 1).

In both cases, we consider the same parameters, except the seed to
generate the random distribution of the constant current density ..

Through Fig. 2(b) and (c) it is possible to verify why and when the
coupling matrix suffer substantial changes. The transition occurs
when the black orred curves cross the green line.

At this time, depreciation induces weak strength in the coupling
matrix, and potentiation induces strong strength.
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Fig. 3 exhibits the time courses of the mean excitatory (Fig. 3(a))
and inhibitory (Fig. 3(b)) coupling strengths from the multiple
coexisting regimes that are shown in Fig. 2(a).

We see that for oy = 0.25 both gj and o;; have constant values for
the time approximately greater than 700 s, and the learning
produces a triangular-type connecting matrix (as shown in Fig. 4),
meaning that the connections among all neurons become
preferentially directed.

For oy = 0.5 the g; values decrease to approximately o.15, while
o;; values oscillate about 0.25, and the coupling matrix becomes
partitioned, indicating the existence of larger clusters.

Increasing the upper border oy to 0.75 both g; and ¢ tend to o,
and the coupling matrix becomes sparse.
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The synaptic weights are suppressed in the desynchronized regime
(Fig. 4(@)), coupling matrix presents a small number of
connections.Thisbehavior: blacklinesin Fig. 2(b) and (c).

In addition, the synaptic weights are potentiated (red lines in Fig.
2(b) and (c)) in the synchronized regime (Fig. 4(b)), and the
coupling matrix exhibits a triangular shape.

The synchronous behavior has a dependence on the direction of
synapses. When the presynaptic neurons are excitatory the
synapses from the high frequency to the low frequency neurons
become stronger.

Presynaptic neurons are inhibitory, the synapses from the low
frequency to the high frequency neurons become stronger.

Fig. 4 shows the final topologies for two networks initially set with
a global coupling topologies after being evolved by a STDP
process.

We see that the STDP induces a non-trivial topology in the
network resulting in networks sparsely connected, moderately

connected (Fig. 4(a)), or densely connected with strong
preferential attachment (Fig. 4(b)).
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Considering an external perturbation (I'; > 0), we also study the cases
without and with plasticity. In the case without STDP, we verify that
the mean order-parameter has a small decay when oy, increases, as
shown in Fig. 5(a) with blackcircles.

The red triangles represent the case with STDP, and unlike the case
without perturbation (Fig. 2(a)), there is an abrupt transition (blue
triangles), due to a first-order transition in the average order
parameter.

The upper border of the inhibitory coupling is relevant to produce
alteration in the dynamics, while the different initial conditions are
important only at the transition.

Based on the results in the inset (Fig. 5(a)), we verify that the network
in the transition can be either in one of the states: (i) high R with
potentiation of the average-time difference for excitatory and
inhibitory connections (red lines in Fig. 5(b) and (c)), or (ii) low R with
excitatory average time-difference in the depression region an
inhibitory inthe potentiation region (blacklines).
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The transition from the synchronized to the desynchronized states
was reported in studies on how stimulation impact on neurological
disorders induced by an abnormal neuronal synchronization
(Popovych & Tass, 2012; Tass & Majtanik, 2006).

A first order transition was also observed in Popovych et al. (2013)
when the stimulation intensity varies in a neural network with eSTDP.

In our simulations, we observe the transition to desynchronization
caused by a variation in the inhibitory coupling in neural networks
with both eSTDP and iSTDP.
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Fig. 6 illustrates the coupling matrix for the two states of the
first-order transition.

In Fig. 6(a), we can see the coupling configuration that
corresponds to high R.

The network presents high connectivity, and for this reasonitiis
possibleto observe synchronous behavior.

For the case of low R, we verify that the network has only
connections from neurons belonging to the inhibitory
population to any other neuron, as shown in Fig. 6(b).



http://dx.doi.org/10.1016/j.neunet.2017.01.010

Spike timing-dependent
plasticity induces
non-trivial topology
in the brain

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

In our results, we have observed for some parameter conditions
not only the improvement of neural spiking synchronization, but
also for other parameter conditions that promote
desynchronization.

The onset of synchronicity comes along side with desynchronicity
in the plastic brain. This balance between different synchronous
behaviors is vital to maintain a fundamental property of a brain
network.

Clusters need to be sufficiently synchronous for information to be
efficiently exchanged, but at the same time sufficiently
desynchronous to behave independently.

Finally, we show that when there is an external perturbation, the
plastic neural network has an abrupt change in behavior
characterized by a first-order transition.



https://www.sciencedirect.com/journal/neural-networks
http://dx.doi.org/10.1016/j.neunet.2017.01.010

Spike timing-dependent
plasticity induces
non-trivial topology
in the brain

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

In conclusion, we have studied the effects of spike timing
dependent plasticity on the synchronous behavior and the evolved
connecting topology of neural networks constructed with
Hodgkin—Huxley neurons.

Regarding the evolved topology, our main conclusion is that
learning under a STDP results in evolved networks that present
complextopology.

Concerning the dynamic synchronous behavior of the evolved
networks, we observe that the studied networks exhibit
concurrent synchronous and non synchronous states with
characteristics that depend on both the upper border of the
inhibitory couplingandthe initial conditions.

Specifically, we verify that the main role of the inhibitory
connections is to produce a delay in the spiking time of the
postsynaptic neurons.
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Spike timing-dependent
plasticity induces
non-trivial topology
in the brain

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

As a consequence, the increase of the inhibitory coupling
strength can suppress synchronous behavior, which contributes to
a decreasein the mean order parameter.

Moreover, the transition from low to a high synchronous state is
smooth by alterations of the inhibitory synapses.

When a random external perturbation isintroduced in the network,
this transition becomes discontinuous, i.e., we observe a first-order
transition.

Similarly to the non-perturbed network, we also find coexistence
of synchronous and non-synchronous neurons in the perturbed
networks.
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March 24, 2024

x Mok igans (JOMC-LER)

Complex systems are charactenzed by a large number of units, such as partickss
indwvduais or neurcns, that interact typd ) neightors but lead ©
e emene olective behavior. Netwerks provide a natural
representation of these systems, where nodss play the role of the units, and Inks
betwean nodes iy painwisa interactions. The distribution of links among he
nodes is a key property of networks, defining how the units of the system interact
Links may foliow simple rules, such as regular S Of random connections, or
may be highly hetsrogeneous, displaying power law distnbutions. More recsntly.
e corcepts of multlayer and higher-order networks have emerged to descride
interconnected sets of networks and many-body interactons, where single-iayer
retworks are generalzed fo simplicial complexes or hypergraphs.

Yo of hese processes become particularty important and wil b2 the focus
of this workshop in terms of applicatons. The first is the spreading of indectious
diseases and the disssmination of information. As disease and Information
propagaton depsnd crticaly on the network of contacts between people
understanding how 2 fopology of these networks atfects the spreading and how
fat, in tum, modifies the network va quarantine, vaccination, use of masks, or
death, has become a major oplc of research. A second fopic %o be discussed n
e workshop s the synchronization of coupled oscilators. Lk

independent osclatrs synchron@e their motion w ci

become an impontant area of ressarch, both n %rms of appications 1o neuronal
dynamics and swams, and 10 basic sclence, character@ng s phass transtions,
Fysterests, and dynamical prope

Online registration and more information:
hitps://www.ictp-salfr.org/wdpcn2024/
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