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Brain
The central organ of the human

nervous system.

It controls most of the activities of 
the body, processing, integrating, 

and coordinating the information it 
receives from the sense organs, and 

making decisions as to the 
instructions sent to the rest of the 

body.

Malleable

Adapt to needs.

Stable

Do not harm the functions
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Brain
Plasticity
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Neuroplasticity or brain plasticity is
defined as the ability of the nervous
system to change its activity in response to
intrinsic or extrinsic stimuli by reorganizing
its structure, functions, or connections. A
fundamental property of neurons is their
ability to modify the strength and efficacy
of synaptic transmission through a diverse
number of activity-dependent
mechanisms, typically referred to as
synaptic plasticity.



Neuron
Dendrites: receive or transmit 

information from/to other 

neuronal cells.

Axon: transmission of nerve 

impulses.
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Within a nervous system, a neuron or nerve cell is
an electrically excitable cell that fires electric signals
called action potentials across a neural network. Neurons
communicate with other cells via synapses, which are
specialized connections that commonly use minute
amounts of chemical neurotransmitters to pass the
electric signal from the presynaptic neuron to the target
cell through the synaptic gap.

https://doi.org/10.1590/S1806-11173721787

Rev. Bras. Ens. Fis. 37 (2) • Jun 2015

https://doi.org/10.1590/S1806-11173721787


Neuron
Cell Body - Cortex

Axon – white matter
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https://doi.org/10.1590/S1806-

11173721787

Rev. Bras. Ens. Fis. 37 

(2) • Jun 2015

https://anatpat.unicamp.br/bineucerebrocoronalindice.html

https://doi.org/10.1590/S1806-11173721787
https://doi.org/10.1590/S1806-11173721787


Neuron
Dendrites: receive or transmit 

information from/to other 

neuronal cells.

Axon: transmission of nerve 

impulses.

Chemical synapses

Neurotransmitters

Electrical synapses

Electrical impulses and 

communication 

junctions



Time line
Plasticity

1890

DW. James

Start

1894

S. Ranón y Cajal

Neuronal architecture

Modifications according 
to stimuli

1898

E. Lugano

Mental associations
occur through new 

communications 
between neurons

8



Time line
Plasticity

1948

J. Konorski

Conditioned reflex occurs from changes in neuronal 
synapses.
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Pavlov Museum, Russia.



Time line
Plasticity

1949

D. Hebb

Synapses used more frequently 
are strengthened as a result of 
the physiological adaptation of 

the neurons involved.

1983

M. Merzenich 

Adults plasticity
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Plasticity
Brain plasticity happens all the 

time

Recovery from injuries and 

microinjuries
Acquisition of new skills

Sensory deprivation

Suedfeld, P, Turner, J.W.Jr., Fine, T.H. (Eds) (1990) Restricted 
Environmental Stimulation: Theoretical and Empirical Developments 

in Flotation REST Springer. Spinger-Verlag ISBN 0-387-97348-6

Response to external stimuli
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https://pt.wikipedia.org/wiki/Especial:Fontes_de_livros/0387973486


Hebbian 
Theory Hebb, D. O. (1949).The organization of behavior. New York: Wiley (pag 62)

https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
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Rev. Bras. Ens. Fis. 37 (2) • Jun 2015 ( https://doi.org/10.1590/S1806-11173721787 )

https://doi.org/10.1590/S1806-11173721787


Synapses
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Plasticity

Long Term Potentiation
(LTP)

Long Term Depression
(LTD)

Synaptic 
rearrangements

Receptors and neurotransmitters: number 
modified 
Reduction of receptors - synaptic weakening
Increase in receptors - synaptic strengthening
Excitatory (eSTDP) and inhibitory synapses (iSTDP)

Structure modification

The same number of connections 
Rearrangement in synapses

Synapse/dendrites sprouting
Synapse/dendrites elimination

Migration and neurogenesis



Evolution work
Brain Dynamic Behavior
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Spike timing-dependent 
plasticity induces

non-trivial topology
in the brain

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

Our main goal is to show that spike timing-dependent
plasticity of excitatory and inhibitory synapses induces
non trivial topologies in the plastic brain.

Initial networks of
neurons fully connected,
evolve to a non trivial
complex network.

Consequently, this non-
trivial topology alters the
synchronous behavior

We have considered: Initial network with a global
coupling, with chemical synapses where the
connections are unidirectional, and the local
dynamics is described by the Hodgkin–Huxley
model

https://www.sciencedirect.com/journal/neural-networks
http://dx.doi.org/10.1016/j.neunet.2017.01.010


Model
Hodgkin-Huxley
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Fig. 1(a): result obtained for A1 = 1.0, A2 = 0.5, τ1 = 1.8 ms, and τ2 = 6.0 ms.

The green dashed line: denotes the Δtij value at which the curves of potentiation and 
depression intersect.

The inset in Fig. 1(a) shows that for |Δtij| < 1.8 ms the potentiation of εij is bigger than the 
depression.

iSTDP (inset in Fig. 1(b)) the potentiation of σij is bigger than the depression for |Δtij| > 9.8 ms.

g0 - scaling factor accounting for the amount of change in inhibitory conductance 
induced by the synaptic
gnorm = β β exp(−β) is the normalizing constant. 
Fig. 1(b) exhibits the result obtained from Eq. (14)

As a consequence, 1σij > 0 for 1tij > 0, and 1σij < 0 for Δtij < 0. The initial inhibitory synaptic 
weights σij are normally distributed with mean and standard deviation equal to σM.

Then, the coupling strengths are updated according to Eq. (14), where σij → σij +10−31σij. 
The updates for εij and σij are applied for the last postsynaptic spike.

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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Fig.2(a) shows the mean order parameter (R) that is calculated for di
fferent initial conditions.

Function of the inhibitory coupling strength σM for a neural network 
with excitatory and inhibitory synapses. Case without STDP (black 
circles) and STDP (red triangles).

For εM equal to 0.25 and varying σM , we do not observe a significant 
alteration of the R value without STDP - initially the network has an 
all-to-all topology.

Increase of σM and present a large standard deviation. This standard 
deviation occurs due to the existence of different synchronization 
states.

The upper border of the inhibitory coupling 2σ and the different 
initial conditions are important to change the dynamics of the 
network with STDP and without external perturbation.

This is verified by means of the decay of the R values and the large 
standard deviation bar.

http://dx.doi.org/10.1016/j.neunet.2017.01.010


http://dx.doi.org/10.1016/j.neunet.2017.01.010

In Fig. 2(b) and (c): σM = 0.675, for different configurations of the initial 
networks and τ = 100 ms.

The black line shows the case in which the network goes to a 
desynchronized state (R ≈ 0.1), whereas the red line exhibits the case 
of a network that presents synchronous behavior (R ≈ 1).

In both cases, we consider the same parameters, except the seed to 
generate the random distribution of the constant current density Ii.

Through Fig. 2(b) and (c) it is possible to verify why and when the 
coupling matrix suffer substantial changes. The transition occurs 
when the black or red curves cross the green line.

At this time, depreciation induces weak strength in the coupling 
matrix, and potentiation induces strong strength.

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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Fig. 3 exhibits the time courses of the mean excitatory (Fig. 3(a)) 
and inhibitory (Fig. 3(b)) coupling strengths from the multiple 
coexisting regimes that are shown in Fig. 2(a).

We see that for σM = 0.25 both εij and σij have constant values for 
the time approximately greater than 700 s, and the learning 
produces a triangular-type connecting matrix (as shown in Fig. 4), 
meaning that the connections among all neurons become 
preferentially directed.

For σM = 0.5 the εij values decrease to approximately 0.15, while 
σij values oscillate about 0.25, and the coupling matrix becomes 
partitioned, indicating the existence of larger clusters.

Increasing the upper border σM to 0.75 both εij and σij tend to 0, 
and the coupling matrix becomes sparse.

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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The synaptic weights are suppressed in the desynchronized regime 
(Fig. 4(a)), coupling matrix presents a small number of 
connections. This behavior: black lines in Fig. 2(b) and (c).

In addition, the synaptic weights are potentiated (red lines in Fig. 
2(b) and (c)) in the synchronized regime (Fig. 4(b)), and the 
coupling matrix exhibits a triangular shape.

The synchronous behavior has a dependence on the direction of 
synapses. When the presynaptic neurons are excitatory the 
synapses from the high frequency to the low frequency neurons 
become stronger.
Presynaptic neurons are inhibitory, the synapses from the low 
frequency to the high frequency neurons become stronger.

Fig. 4 shows the final topologies for two networks initially set with 
a global coupling topologies after being evolved by a STDP 
process.

We see that the STDP induces a non-trivial topology in the 
network resulting in networks sparsely connected, moderately 
connected (Fig. 4(a)), or densely connected with strong 
preferential attachment (Fig. 4(b)).

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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Considering an external perturbation (Γi > 0), we also study the cases 
without and with plasticity. In the case without STDP, we verify that 
the mean order-parameter has a small decay when σM increases, as 
shown in Fig. 5(a) with black circles.

The red triangles represent the case with STDP, and unlike the case 
without perturbation (Fig. 2(a)), there is an abrupt transition (blue 
triangles), due to a first-order transition in the average order 
parameter.

The upper border of the inhibitory coupling is relevant to produce 
alteration in the dynamics, while the different initial conditions are 
important only at the transition.

Based on the results in the inset (Fig. 5(a)), we verify that the network 
in the transition can be either in one of the states: (i) high R with 
potentiation of the average-time difference for excitatory and 
inhibitory connections (red lines in Fig. 5(b) and (c)), or (ii) low R with 
excitatory average time-difference in the depression region and 
inhibitory in the potentiation region (black lines).

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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The transition from the synchronized to the desynchronized states 
was reported in studies on how stimulation impact on neurological 
disorders induced by an abnormal neuronal synchronization 
(Popovych & Tass, 2012; Tass & Majtanik, 2006).

A first order transition was also observed in Popovych et al. (2013) 
when the stimulation intensity varies in a neural network with eSTDP.

In our simulations, we observe the transition to desynchronization 
caused by a variation in the inhibitory coupling in neural networks 
with both eSTDP and iSTDP.

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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Fig. 6 illustrates the coupling matrix for the two states of the 
first-order transition.

In Fig. 6(a), we can see the coupling configuration that 
corresponds to high R.

The network presents high connectivity, and for this reason it is 
possible to observe synchronous behavior.

For the case of low R, we verify that the network has only 
connections from neurons belonging to the inhibitory 
population to any other neuron, as shown in Fig. 6(b).

http://dx.doi.org/10.1016/j.neunet.2017.01.010
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In our results, we have observed for some parameter conditions
not only the improvement of neural spiking synchronization, but
also for other parameter conditions that promote
desynchronization.

The onset of synchronicity comes along side with desynchronicity
in the plastic brain. This balance between different synchronous
behaviors is vital to maintain a fundamental property of a brain
network.

Clusters need to be sufficiently synchronous for information to be
efficiently exchanged, but at the same time sufficiently
desynchronous to behave independently.

Finally, we show that when there is an external perturbation, the
plastic neural network has an abrupt change in behavior
characterized by a first-order transition.

https://www.sciencedirect.com/journal/neural-networks
http://dx.doi.org/10.1016/j.neunet.2017.01.010


Spike timing-dependent 
plasticity induces

non-trivial topology
in the brain

Neural Networks

http://dx.doi.org/10.1016/j.neunet.2017.01.010

In conclusion, we have studied the effects of spike timing
dependent plasticity on the synchronous behavior and the evolved
connecting topology of neural networks constructed with
Hodgkin–Huxley neurons.

Regarding the evolved topology, our main conclusion is that
learning under a STDP results in evolved networks that present
complex topology.

Concerning the dynamic synchronous behavior of the evolved
networks, we observe that the studied networks exhibit
concurrent synchronous and non synchronous states with
characteristics that depend on both the upper border of the
inhibitory coupling and the initial conditions.

Specifically, we verify that the main role of the inhibitory
connections is to produce a delay in the spiking time of the
postsynaptic neurons.

https://www.sciencedirect.com/journal/neural-networks
http://dx.doi.org/10.1016/j.neunet.2017.01.010
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As a consequence, the increase of the inhibitory coupling
strength can suppress synchronous behavior, which contributes to
a decrease in the mean order parameter.

Moreover, the transition from low to a high synchronous state is
smooth by alterations of the inhibitory synapses.

When a random external perturbation is introduced in the network,
this transition becomes discontinuous, i.e., we observe a first-order
transition.

Similarly to the non-perturbed network, we also find coexistence
of synchronous and non-synchronous neurons in the perturbed
networks.

https://www.sciencedirect.com/journal/neural-networks
http://dx.doi.org/10.1016/j.neunet.2017.01.010
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