Phase and frequency synchronization of non-locally coupled oscillators

> Ricardo L. Viana viana@fisica.ufpr.br

Departamento de Física, Universidade Federal do Paraná, Curitiba-PR, Brasil

Workshop on Dynamical Processes on Complex Networks, May 13 – 17, 2024, São Paulo, Brasil, ICTP-SAIFR/IFT-UNESP

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Collaborators

 Carlos Adalberto S. Batista (professor, UFPR - Center for Marine Studies)

 Bruno Mantovani Czajkowski (Phd student: UFPR)

 Pedro Haerter Neto (PhD student: UFPR, now in Madrid-Spain)

Contents

Introduction

Model

General case

Adiabatic limit

Removal of oscillators

Time-delayed feedback control

Conclusions

<ロ > < 母 > < 星 > < 星 > 三 の へ C 3/50

Introduction

- phase oscillators are simple models for many dynamical systems of physical and biological interest
- assemblies of phase oscillators can present collective behavior, like phase and frequency synchronization
- synchronization is often caused by interactions among phase oscillators, even when they are slightly different
- the interaction among phase oscillators can be mediated by a chemical which diffuses along "cells" (pointlike systems)
- the coupling is non-local, and takes into account the relative distances among oscillators
- this work: how are the synchronization properties influenced by coupling parameters characteristic of a diffusion-mediated interaction?
- our answer involves the numerical solution of a system of integro-differential equations, containing the Green's functions related to the boundary conditions and the geometrical details.

Phase oscillators

- \blacktriangleright one-dimensional dynamical systems defined on a topological circle S^1
- \blacktriangleright characterized by a geometrical phase θ which varies with time according to a given frequency ω

$$\frac{d\theta}{dt} = \omega, \qquad 0 \le \theta < 2\pi$$

- often appear from a stable limit-cycle in phase space, after a suitable change of variables
- simple mathematical models of periodic phenomena of physical and biological interest

Van der Pol system

- electronic circuit with nonlinear element (triode, semiconductor, ...)
- x: current through the capacitor (time-rate y)

$$\dot{x} = y, \qquad \dot{y} = \mu(1 - x^2)y - x$$

< ≧ ▶ ≧ ∽ Q ⁽⁾ 6/50

- $\mu \neq 0$: stable limit-cycle in the phase plane x y
- relaxation oscillations
- geometrical phase: $\theta(t) = \arctan[y(t)/x(t)]$

Bursting neurons

- bursting: rapid sequence of spikes (membrane potential), after a quiescent period
- bursting phase: defined in terms of the (discrete) times at which at which a kth burst begins (nk) and ends (nk+1)

$$\theta(n) = 2\pi k + 2\pi \frac{n - n_k}{n_{k+1} - n_k}, \qquad (n_k \le n \le n_{k+1})$$

► bursting frequency: $\omega = (\theta(n) - \theta(0))/n$

Synchronization of phase oscillators

- each firefly flashes periodically: an individual phase oscillator
- fireflies synchronize their flashing rhythms through their visual interaction
- since the velocity of light is large the coupling is instantaneous (mean-field effect)
- "classical" Kuramoto model (global coupling)

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_j \sin(\theta_j - \theta_i)$$

8/50

Clock cells in SCN

- suprachiasmatic nucleus (SCN): small region in the brain hypothalamus whose function is to control circadian rhythms (photic stimulation)
- ▶ it contains *circa* 10⁴ clock cells with a natural variety of individual frequencies (~ 24 h cycle)
- their coupling is mediated by a neurotransmitter (GABA) which diffuses through the spatial medium in which the SCN cells are embedded

Synchronization of clock cells

- S. Yamaguchi et al., Science 302, 1408 (2003)
- since the SCN acts as a pacemaker, in order to generate a collective single rhythm each clock cell must synchronize its own frequency
- synchronization as a coupling-induced collective phenomenon
- coupling is related to the diffusion of GABA in the intercell medium

Uncoupled oscillators

- phase oscillators are pointlike and occupy fixed positions in a spatial domain R (bounded or unbounded) in d dimensions
- θ_j : phase of the *j*th oscillator $(j = 1, 2, \dots N)$
- r_j: position vector of the jth oscillator
- ω_j : natural frequency of the *j*th oscillator $(\dot{\theta}_j = \omega_j)$
- randomly chosen from a unimodal normalized probability distribution g(ω) (with unit variance)

$$\int_{-\infty}^{\infty} d\omega \, g(\omega) = 1$$

Oscillator coupling induced by a mediating substance

in the presence of coupling the oscillator dynamics is linearly proportional to the local concentration of the mediating substance A at the oscillator position

$$\dot{\theta}_j = \omega_j + KA(\mathbf{r}_j, t), \qquad (j = 1, 2, \dots N)$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 12/50

- K > 0: coupling intensity
- all quantities are non-dimensional

Diffusion with pointlike sources

the substance is produced by all the pointlike oscillators and diffuses through the spatial region

$$\frac{\partial A}{\partial t} = -\eta A + D \nabla^2 A + \sum_{k=1}^N h(\theta_k) \,\delta(\mathbf{r} - \mathbf{r}_k)$$

- ▶ D: diffusion coefficient, η : coefficient of chemical degradation
- the source term for the diffusion equation depends on the oscillator phases by a (generally nonlinear) function h(.)
- suitable initial and boundary conditions have to be specified and boundary conditions have to be specified.

General formulation

- diffusion characteristic time is arbitrary with respect to the oscillator periods ("slow" diffusion)
- we have to solve simultaneously the following system of ordinary/partial differential equations

$$\frac{d\theta_j}{dt} = \omega_j + KA(\mathbf{r}_j, t) \qquad (j = 1, 2, \dots N),$$
$$\frac{\partial A}{\partial t} + \eta A - D\nabla^2 A = \sum_{k=1}^N h(\theta_k)\delta(\mathbf{r} - \mathbf{r}_k),$$

- for appropriate boundary conditions at some limiting surface $\partial \mathcal{R}$, as well as an initial condition profile $A(\mathbf{r}, t = 0)$
- ▶ the Green function $G(\mathbf{r}, t; \mathbf{r}', t')$, satisfies

$$\frac{\partial G}{\partial t} + \eta G - D \nabla^2 G = \delta(\mathbf{r} - \mathbf{r}') \,\delta(t - t'),$$

▶ homogeneous Dirichlet boundary conditions: $G(\mathbf{r}, t; \mathbf{r}', t')$ for $\mathbf{r} \in \partial \mathcal{R}$, and the initial condition $G(\mathbf{r}, t = 0; \mathbf{r}', t') = 0$ and $\mathbf{r} \in \mathcal{O} \otimes \mathcal{O}$ (14/50)

General formulation

Solution of the inhomogeneous equation for absorbing boundary conditions on ∂R: A(**r** ∈ ∂R, t) = 0, and initial profile A(**r**, t = 0) = 0,

$$A(\mathbf{r},t) = \sum_{k=1}^{N} \int_{0}^{t} dt' G(\mathbf{r},t|\mathbf{r}_{k},t') h(\theta_{k}(t')).$$

 \blacktriangleright system of integro-differential equations $(j=1,2,\ldots N)$

$$\frac{d\theta_j}{dt} = \omega_j + K \sum_{k=1}^N \int_0^t dt' G(\mathbf{r}_j, t; \mathbf{r}_k, t') h(\theta_k(t')),$$

• we choose: $h(\theta_k) = (1/N)\sin(\theta_k - \theta_j)$

$$\frac{d\theta_j}{dt} = \omega_j + \frac{K}{N} \sum_{k=1}^N \int_0^t dt' \sin[\theta_k(t') - \theta_j(t')] G(\mathbf{r}_j, t; \mathbf{r}_k, t').$$

One-dimensional bounded domain

 ▶ finite domain 0 ≤ x ≤ L with absorbing boundary conditions (A(0,t) = A(L,t) = 0) and initial condition A(x,t = 0) = 0
▶ Green function as a superposition of eigenfunctions

$$G(x,t;x',t') = \frac{2H(t-t')}{L} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right) \times \exp\left\{-\left[D\left(\frac{n\pi}{L}\right)^2 + \eta\right](t-t')\right\},$$

▶ randomly chosen positions $\{x_j\}_{j=1}^N$ in 0 < x < L

$$\frac{d\theta_j}{dt} = \omega_j + \frac{K}{N} \sum_{k=1}^N \int_0^t dt' \sin[\theta_k(t') - \theta_j(t')] G(x_j, t; x_k, t'),$$

Two-dimensional rectangular domain

• rectangular domain: $0 < x < a, 0 \le y \le b$

$$G(\mathbf{r}, t; \mathbf{r}', t') = \frac{4H(t - t')}{L} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin\left(\frac{n\pi x}{a}\right) \times \\ \sin\left(\frac{n\pi x'}{a}\right) \sin\left(\frac{m\pi y}{b}\right) \sin\left(\frac{m\pi y'}{b}\right) \times \\ \exp\left\{-\left[D\left(\frac{n^2}{a^2} + \frac{m^2}{b^2}\right)\pi^2 + \eta\right](t - t')\right\}.$$

► oscillators have randomly chosen positions $\{x_{j_{\frac{1}{2}}}y_{j_{\frac{1}{2}}}\}_{j=1}$ = $\Im Q \bigcirc 17/50$

Two-dimensional circular domain

• circular domain of radius r = a

$$G(r,\vartheta,t;r',\vartheta',t') = \frac{1}{\pi D} \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left[J'_m(x_{mn})\right]^2} \times J_m\left(x_{mn}\frac{r}{a}\right) J_m\left(x_{mn}\frac{r'}{a}\right) \cos[m(\vartheta-\vartheta')] \times \exp\left\{-\left(\eta + \frac{Dx_{mn}^2}{a^2}\right)(t-t')\right\},$$

▶ x_{mn} : *n*th positive root of the Bessel function J_m ▶ randomly chosen positions $\{r_j, \vartheta_j\}_{j=1}^N$, with $0 \le r_j \le a_{\text{resc}}$ and $\beta_{j=1,0}$.

Phase synchronization

Kuramoto complex order parameter

$$z(t) = R(t) e^{\phi(t)} = \frac{1}{N} \sum_{k=1}^{N} e^{i\theta_k(t)}$$

- order parameter magnitude $R(t) = \sqrt{z^* z}$. After some transient we take its mean R over a time interval
- $\bar{R} \approx 0$: the oscillator phases are uniformly distributed and the resultant phasor vanishes
- \blacktriangleright $\bar{R} \approx 1$: all the oscillators are phase-synchronized since their phasors in the unit circle add coherently
- numerically R = 0.95 as a threshold for complete phase synchronization, lower values characterizing, partial sync _ _____

Order parameter magnitude vs K

- N = 100 oscillators randomly distributed in (a) linear, (b) rectangular, (c) circular domains
- \bar{R} as a function of the coupling strength K, for $D = \eta = 1$,
- monotonic increase of R with the coupling strength K, signaling a synchronization transition roughly at K = 1
- rectangular domain [of sides a = b = 1]: the range of K is ten times higher than for the linear domain
- circular domain (radius a = 1): similar range as for one-dimensional domain (radial symmetry)

Order parameter magnitude vs η

- N = 100 oscillators randomly distributed in (a) linear, (b) rectangular, (c) circular domains
- ▶ \overline{R} as a function of the degradation parameter η , for K = 10and D = 1.
- decrease of \overline{R} as η increases
- since η measures the loss of the substance mediating the coupling, the basic effect of its increase is the decrease in the amount of phase synchronization

Order parameter magnitude vs D

- N = 100 oscillators randomly distributed in (a) linear, (b) rectangular, (c) circular domains
- ▶ \overline{R} as a function of the diffusion coefficient D, for K = 10 and $\eta = 1.0$.
- ▶ \overline{R} decrease monotonically as D increases: a large D actually desynchronizes the oscillators
- the coupling effect is more effective the longer the mediating substance remains in the spatial medium in which the oscillators are embedded
- ► for large D the permanence time of the substance is small, reducing the coupling effect on synchronization (for absorbing boundary conditions)

Frequency synchronization

perturbed oscillator frequencies

$$\Omega_j(T) = \lim_{t \to \infty} \frac{1}{t} \left\{ \theta_j(t+T) - \theta_j(T) \right\}$$

- if uncoupled (K = 0) then $\Omega_j = \omega_j$
- frequency synchronization: Ω₁ = Ω₂ = ... (up to a given tolerance)
- numerically we found that the above limit always exists and is independent on T

Characterizing frequency synchronization

- frequency order parameter: we divide the frequency interval [min Ω_j, max Ω_j] into sub-intervals of size δ
- consider the fraction of oscillators belonging to the sub-interval with the largest number of oscillators
- ▶ if the largest number of oscillators in a given interval is N_{max} , we define a frequency order parameter by $P = N_{max}/N$
- if all the oscillators have the same frequency, then P = 1 (frequency synchronization)
- if there is no frequency synchronization $N_{max} \approx 1$ and $P \sim 1/N \to 0$ for $N \gg 1$
- in the numerical simulations we have chosen $\delta = \sigma/2001$, where $\sigma = \sqrt{\pi/8}$ is the standard deviation of the uncoupled frequency (Gaussian) distribution

$$g(\omega) = \frac{2}{\pi} e^{-4\omega^2/\pi}.$$

<□▶ < @▶ < ≧▶ < ≧▶ = 9 < ℃ 24/50

Frequency synchronization vs D

- perturbed oscillator frequencies Ω_j in increasing order of their values
- no coupling: $\Omega_j = \omega_j$
- (a) $K = \eta = 1.0$ and different values of D (linear domain)
- (b) rectangular domain and (c) circular domain
- larger values of D produce frequency desynchronization just like they do for oscillator phases (for absorbing boundary conditions)

Adiabatic limit

- Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995); Y. Kuramoto and H. Nakao, Physica D 103, 294 (1997)
- ▶ if the diffusion characteristic time is much smaller than any of the oscillator periods $2\pi/\omega_j$, then $\partial A_E/\partial t \approx 0$
- the concentration of the substance undergoes a fast relaxation and converge very rapidly to its stationary limit A_E

$$\eta A_E - D\nabla^2 A_E = \sum_{k=1}^N h(\theta_k) \delta(\mathbf{r} - \mathbf{r}_k)$$

local equilibrium concentration of the mediating chemical

$$A_E(\mathbf{r}) = \sum_{k=1}^N h(\theta_k) G_E(\mathbf{r}, \mathbf{r}_k)$$

► G_E(**r**, **r**'): Green function for Dirichlet boundary conditions at the boundary ∂R of the spatial domain

$$\eta G_E(\mathbf{r},\mathbf{r}') - D\nabla^2 G_E(\mathbf{r},\mathbf{r}') = \sum_{k=1}^N \delta(\mathbf{r}-\mathbf{r}')$$

Adiabatic limit

coupled oscillator equations (in the adiabatic limit)

$$\dot{\theta}_j = \omega_j + K \sum_{k=1}^N h(\theta_k) G_E(\mathbf{r}_j, \mathbf{r}_k), \qquad (j = 1, 2, \dots N).$$

choosing the nonlinear response function

$$h(\theta_k) = \frac{1}{N}\sin(\theta_k - \theta_j),$$

we have a Kuramoto-like model of coupled phase oscillators

$$\dot{\theta}_j = \omega_j + \frac{K}{N} \sum_{k=1}^N \sin(\theta_k - \theta_j) G_E(\mathbf{r}_j, \mathbf{r}_k), \qquad (j = 1, 2, \dots N),$$

For simplicity we choose free boundary conditions: lim_{|**r**|→∞} G_E(**r**, **r**') = 0.

Adiabatic limit: one dimension

equilibrium Green function (free space)

$$G_E(x,t;x_k,t') = \frac{H(t-t')e^{-\eta(t-t')}}{\sqrt{4\pi D(t-t')}} \exp\left\{-\frac{(x-x_k)^2}{4D(t-t')}\right\}$$

interaction kernel

$$\sigma(\mathbf{r}_j, \mathbf{r}_k, t) = \int_0^t dt' \, G_E(\mathbf{r}_k, t; \mathbf{r}_k, t')$$

 \blacktriangleright the adiabatic limit is equivalent to take the $t \to \infty$ limit in the interaction kernel

$$\sigma(x_j, x_k) = \lim_{t \to \infty} \sigma(x_j, x_k, t) = \frac{\gamma}{2\eta} e^{-\gamma(x_j - x_k)}$$

 which is the result previously derived by Kuramoto and Nakao [Chaos 9, 902 (1999)]

Adiabatic limit: two and three dimensions

equilibrium Green functions (free space)

$$G_E(\mathbf{r}, t; \mathbf{r}', t) = \frac{H(t - t')e^{-\eta(t - t')}}{[4\pi D(t - t')]^{d/2}} \exp\left\{-\frac{|\mathbf{r} - \mathbf{r_k}|^2}{4D(t - t')}\right\}$$

• interaction kernel in two dimensions (d=2)

$$\sigma(\mathbf{r}_j, \mathbf{r}_k, t) = \frac{1}{4\pi D} \int_{u_1}^{\infty} \frac{du}{u} \exp\left(-u - \frac{a_2}{u}\right)$$

$$a_2 = \frac{\gamma^2 |\mathbf{r}_j - \mathbf{r}_k|^2}{4}, \qquad u_1 = \frac{|\mathbf{r}_j - \mathbf{r}_k|^2}{4Dt}$$

• taking the $t \to \infty$ limit

$$\sigma(\mathbf{r}_j, \mathbf{r}_k) = \frac{1}{2\pi D} K_0(\gamma |\mathbf{r}_j - \mathbf{r}_k|)$$

for the free three-dimensional case

$$\sigma(\mathbf{r}_j, \mathbf{r}_k) = \frac{1}{4\pi D} \frac{1}{|\mathbf{r}_j - \mathbf{r}_k|} e^{-\gamma |\mathbf{r}_j - \mathbf{r}_k|}$$

both results agree with those of Nakao [Chaos 9, 902 (1999)]

One-dimensional case

1

infinite one-dimensional chain of oscillators

$$\dot{\theta}_j = \omega_j + KC_{1,j}(\gamma, N) \sum_{k=1}^N e^{-\gamma |x_k - x_j|} \sin(\theta_k - \theta_j),$$

- coupling length: $\gamma = \sqrt{\eta/D}$,
- \blacktriangleright regular lattices: the oscillator positions are separated by a fixed distance Δ

$$|x_k - x_j| = \Delta \times \min\left\{\Psi_k^j, N - \Psi_k^j\right\},$$

• Ψ_k^j is the remainder of the integer division of |k - j| by $N_{\mathbb{R}}$.

One-dimensional case

 normalization condition for the Green functions in d dimensions

÷

$$\int d^d r \, G(\mathbf{r}, \mathbf{r}_k) = 1,$$

normalization factor

$$C_{1,j}(\gamma, N)^{-1} = \begin{cases} \sum_{k=1}^{N} e^{-\gamma |x_k - x_j|} - 1, & N \text{ even} \\ 2 \sum_{k=1}^{(N-1)/2} e^{-\Delta \gamma k}. & N \text{ odd} \end{cases}$$

▶ for N odd this can be put into a symmetrical form

$$\dot{\theta}_j = \omega_j +$$

$$KC_{1,j}(\gamma, N) \sum_{k=1}^{(N-1)/2} e^{-\Delta\gamma k} \left\{ \sin(\theta_{j-k} - \theta_j) + \sin(\theta_{j+k} - \theta_j) \right\}$$

▶ initial conditions $\theta_k(t=0)$ are randomly chosen from a uniform probability distribution in $[0, 2\pi)_{ab}$, $(ab)_{ab} = 0.00$ $(ab)_{31/50}$

One-dimensional case: limits

- vanishing coupling length: $\gamma = \sqrt{\eta/D} \rightarrow 0$
- normalization factor

$$C_{1,j}(\gamma = 0, N) = 1/(N-1)$$

rearranging the summations we have

$$\dot{\theta}_j = \omega_j + \frac{1}{N-1} \sum_{\ell=1}^{N-1} \sin(\theta_\ell - \theta_j)$$

- which is the classical Kuramoto model of global coupling (all-to-all): each oscillator is influenced by the mean field caused by all other oscillators
- infinitely large coupling length: $\gamma = \sqrt{\eta/D} \gg 1$: only the k = 1 terms contribute significantly in the summations
- the coupling term is proportional to

$$\sin(\theta_{j-1} - \theta_j) + \sin(\theta_{j+1} - \theta_j)$$

• which is the nearest-neighbor (or diffusive) local coupling $_{\odot \circ \circ \circ}$ $_{_{32/50}}$

Phase order parameter \bar{R} and coupling parameters

- γ : coupling length, K: strength
- small γ: transition from non-synchronized to completely synchronized states, for K > K_c.
- ▶ global coupling limit ($\gamma = 0$): for $N \to \infty$: $K_{c,\infty} = 2/\pi g(0) = 1$; for finite N: $K_c \gtrsim K_{c,\infty}$
- γ ≤ 0.015: increase of K_c, with a narrow "valley" of non-synchronized behavior in between (chimera states)
- Iarger γ: synchronization cannot be achieved for 0 ≤ K ≤ 5.0 (local coupling limit)

Frequency order parameter P and coupling parameters

- $\blacktriangleright~\gamma < 0.022$: similar behavior in comparison with the phase order parameter
- phase synchronized oscillators are always frequency synchronized but the converse is not always true
- K_c for frequency synchronization should be slightly smaller than for phase synchronization

Two-dimensional case

▶ no boundary surfaces: the Green function is proportional to the modified Bessel function of the second kind K₀(γ|**r** - **r**_k|),

$$\dot{\theta}_j = \omega_j + KC_{2,j}(\gamma, N) \sum_{k=1, k \neq j}^N \mathcal{K}_0(\gamma |\mathbf{r}_k - \mathbf{r}_j|) \sin(\theta_k - \theta_j),$$

normalization factor

$$C_{2,j}(\gamma,N)^{-1} = \sum_{k=1,k\neq j}^{N} \mathcal{K}_0(\gamma |\mathbf{r}_k - \mathbf{r}_j|).$$

Rectangular lattice

- rectangular lattice with n × n sites with uniform spacing L_x in the x-axis direction and L_y in the y-axis direction
- ▶ periodic boundary conditions: distance between two oscillators located at $\mathbf{r}_k = (i_1L_x, j_1L_y)$ and $\mathbf{r}_j = (i_2L_x, j_2L_y)$

$$\begin{aligned} |\mathbf{r}_{k} - \mathbf{r}_{j}| &= \sqrt{(\Delta x)_{k,j}^{2} + (\Delta y)_{k,j}^{2}}, \\ (\Delta x)_{k,j} &= L_{x} \min\left\{\Psi_{i_{1}}^{i_{2}}, n - \Psi_{i_{1}}^{i_{2}}\right\}, \\ (\Delta y)_{k,j} &= L_{y} \min\left\{\Psi_{j_{1}}^{j_{2}}, n - \Psi_{j_{1}}^{j_{2}}\right\}. \end{aligned}$$

Snapshots of the two-dimensional case

- $\Delta = L_x = L_y = 1$ and $N^2 = 55^2 = 3025$
- LEFT (γ = 0.8 and K = 0.9): coexistence of spatial domains with phase-correlated oscillators
- ▶ RIGHT ($\gamma = 0.8$ and K = 2.5): emergence of spatially phase-coherent regions

Order parameters of the two-dimensional case

- LEFT: phase order parameter magnitude, RIGHT: frequency order parameter magnitude
- ▶ γ small: transition to synchronized behavior for $K > K_c \approx 1.0$
- difference with the one-dimensional case: range of γ has a nearly ten-fold increase: a diffusive process in two dimensions involves a larger range for the same value of γ

Lesions: removal of oscillators

- neurodegenerative conditions (e.g. Alzheimer disease) related to impairment of neurons and/or their synaptical connections
- lesion protocols: given a network initially with N oscillators and a coupling strength K_i , a number N_d of them is removed
- ▶ active oscillators: the remaining $N_a = N N_d$ ones
- the network is supposed to adapt to these alterations, such that the coupling strength will vary with the number of removed oscillators in three possible ways
 - 1. enhanced coupling: $K(N_d) = K_i N / (N N_d)$;
 - 2. invariant coupling: $K(N_d) = K_i$;
 - 3. reduced coupling: $K(N_d) = K_i N / (N + N_d)$
- we choose values of (K_i, γ) which lead to completely phase-synchronized states and solve the coupled oscillator equations for a long time, until the transients have died out
- then we remove a small quantity of sites and resume integration, such that the order parameter is recomputed.

Removal of oscillators (invariant coupling)

- ▶ Phase order parameter magnitude as a function of time for a one-dimensional chain with $\gamma = 0.01$ and $K_i = 4$
- dashed vertical bars indicate the times at which a small quantity of sites is removed until we get N = N_d
- the order parameter decreases with time in a similar fashion to the directed percolation scenario
- ► the oscillators are kept synchronized (R > 0.95) until, after a time ~ 10⁴, they progressively lose phase synchronization and eventually become completely non-synchronized.

Removal of oscillators (one and two dimensions)

 \blacktriangleright average phase order parameter $\langle R \rangle$ taken over those time intervals for which the number of active oscillators

 $N_a = N - N_d$ is constant

- we have made for each protocol eight simulations that differ only in the order of removal of the oscillators
 - 1. invariant coupling: the chain becomes non-synchronized as ${\cal N}_d$ is increased
 - 2. enhanced coupling: the chain remains synchronized even if N_d is as large as 2500, with $N_i = 3000$
 - 3. reduced coupling: transition to non-synchronized behavior occurs even before the case for which K does not vary with $N_{d^*-41/50}$

Removal of oscillators (two-dimensional)

- the value of N_d for which the lattice start losing synchronization is practically not affected by the order by which each oscillator is removed
- ▶ N_{crit} : critical value of N_d , for given K and γ , such that, if $N_d \ge N_{crit}$, the lattice cannot synchronize
- we estimate the critical fraction of removed oscillators, $f_{crit} = N_{crit}/N$, by taking the minimum value of N_d yielding $R(N_d) \le 0.9R(N_d = 0)$
- critical fraction of removed oscillators as a function of γ for different values of K_i with (a) invariant, (b) reduced coupling

Suppression of synchronization in neuronal systems

- synchronization in neuronal networks is often related to pathological rhythms (Parkinson's disease, essential tremor, epilepsy, etc.)
- deep brain stimulation: suppression of phase synchronization by an external electrical signal
- computer simulation: time-delayed feedback control signal depending on the local mean field

Time-delayed feedback control

coupled oscillator equations

$$\dot{\theta}_j = \omega_j + KY_j(t)$$

coupling term

$$Y_j(t) = \sum_k G(\mathbf{r}_j, \mathbf{r}_k, \gamma) \sin(\theta_k(t) - \theta_j(t)).$$

the values of K and γ are chosen to yield complete synchronization

 \blacktriangleright external feedback control with time delay au and amplitude arepsilon

$$\dot{\theta}_j = \omega_j + KY_j(t) + \varepsilon Y_j(t-\tau)H(t-\alpha),$$

- $H(t \alpha)$ is the Heaviside unit-step function
- α is the time after which the control is continuously applied (chosen after transients have died out)
- mean field of the network at a given time

$$\Theta(t) = \frac{1}{N} \sum_{j=1}^{N} \theta_j(t),$$

Mean field as diagnostic of synchronization

- complete phase synchronization: the mean field will have the same variation in time as any of the oscillator themselves, with a finite variance Var(Θ)
- no synchronization: for large N the phases are more or less uniformly distributed over the interval [0, 2π), and the mean field have fluctuations of low amplitude, and a corresponding small variance
- ► LEFT (no control): synchronized behavior
- ▶ RIGHT: delayed feedback control applied at $\alpha = 1500$, $\varepsilon = 4$, and $\tau = 100$: partial suppression of synchronization, z = 0.00, 45/50

Quantifying suppression of synchronization

suppression coefficient (Pikowsky and Rosenblum)

$$S = \sqrt{\operatorname{Var}(\Theta) / \operatorname{Var}(\Theta_f)}$$

• $\Theta_f(t)$: mean field after the control signal has been applied

- 1. good suppression of synchronization: S>1
- 2. no suppression: S = 1
- 3. enhanced synchronization: 0 < S < 1

► S versus τ and ε for a two-dimensional lattice for K = 6.0and (a) $\gamma = 0.02$, (b) 0.4 and (c) 0.6.

Conclusions

- a system of nonlinear integro-differential equations was obtained to model the coupling among phase oscillators mediated by a diffusing substance
- the coupling term is nonlocal and depends on the previous history of the oscillators dynamical behavior
- in the fast relaxation (adiabatic) limit the local concentration of the mediating substance achieves instantaneously its equilibrium value: system of coupled differential equations (no memory effects)
- the corresponding Green function depends on the geometry and the (absorbing) boundary conditions
- three geometries have been investigated: bounded linear, rectangular and circular domains
- in the adiabatic limit (diffusion occurs instantaneously) the expressions reduce to those previously obtained

Conclusions

- collective behavior: phase and frequency synchronization (order parameters)
- increase with coupling strength: transition between non-synchronized and synchronized states
- increasing degradation coefficient reduces synchronization (less mediating substance at local level)
- similar effect for increasing diffusion coefficient: reduces permanence time in the diffusion region (absorbing boundary conditions)
- lesions (removal of oscillators): three protocols. Coupling strength has to increase to keep synchronization
- external time-delayed feedback control: suppression of synchronization

Future works and perspectives

- coupling equations can be extended for nonlinear dynamical systems (flows and maps)
- reflecting boundary conditions can be introduced (but Green 's functions are more complicated!)
- coupling can be mediated by the emission and absorption of waves (finite propagation speed): "retarded potentials"
- it is possible to include advection effects in the diffusion equation (asymmetric coupling)
- ► chemotaxis: include motion of the pointlike oscillators, according to a chemotactic force F = K∇A. The chemical coupling equations must be coupled to Newtonian equations of motion F_j = mr̃_j for each oscillator
- a wealth of cases of potential interest in microbiology/cell biology (*Dictyostelium sp.*)

- B. Czajkowski, C. A. S. Batista, and R. L. Viana, Synchronization of phase oscillators with chemical coupling: removal of oscillators and external feedback control, Physica A 610, 128418 (2023).
- R. P. Aristides and R. L. Viana, An integro-differential equation for dynamical systems with diffusion-mediated coupling, Nonlinear Dynamics 100, 3759 (2020).
- P. Haerter and R. L. Viana, Synchronization of phase oscillators due to nonlocal coupling mediated by the slow diffusion of a substance, Braz. J. Phys. 53, 114 (2023).