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Introduction
▶ phase oscillators are simple models for many dynamical

systems of physical and biological interest

▶ assemblies of phase oscillators can present collective behavior,
like phase and frequency synchronization

▶ synchronization is often caused by interactions among phase
oscillators, even when they are slightly different

▶ the interaction among phase oscillators can be mediated by a
chemical which diffuses along ”cells”(pointlike systems)

▶ the coupling is non-local, and takes into account the relative
distances among oscillators

▶ this work: how are the synchronization properties influenced
by coupling parameters characteristic of a diffusion-mediated
interaction?

▶ our answer involves the numerical solution of a system of
integro-differential equations, containing the Green’s functions
related to the boundary conditions and the geometrical details
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Phase oscillators

▶ one-dimensional dynamical systems defined on a topological
circle S1

▶ characterized by a geometrical phase θ which varies with time
according to a given frequency ω

dθ

dt
= ω, 0 ≤ θ < 2π

▶ often appear from a stable limit-cycle in phase space, after a
suitable change of variables

▶ simple mathematical models of periodic phenomena of
physical and biological interest
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Van der Pol system

▶ electronic circuit with nonlinear element (triode,
semiconductor, ...)

▶ x: current through the capacitor (time-rate y)

ẋ = y, ẏ = µ(1− x2)y − x

▶ µ ̸= 0: stable limit-cycle in the phase plane x− y

▶ relaxation oscillations

▶ geometrical phase: θ(t) = arctan[y(t)/x(t)]
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Bursting neurons

▶ bursting: rapid sequence of spikes (membrane potential), after
a quiescent period

▶ bursting phase: defined in terms of the (discrete) times at
which at which a kth burst begins (nk) and ends (nk+1)

θ(n) = 2πk + 2π
n− nk

nk+1 − nk
, (nk ≤ n ≤ nk+1)

▶ bursting frequency: ω = (θ(n)− θ(0))/n
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Synchronization of phase oscillators

▶ each firefly flashes periodically: an individual phase oscillator

▶ fireflies synchronize their flashing rhythms through their visual
interaction

▶ since the velocity of light is large the coupling is instantaneous
(mean-field effect)

▶ ”classical”Kuramoto model (global coupling)

θ̇i = ωi +
K

N

∑
j

sin(θj − θi)



9/50

Clock cells in SCN

▶ suprachiasmatic nucleus (SCN): small region in the brain
hypothalamus whose function is to control circadian rhythms
(photic stimulation)

▶ it contains circa 104 clock cells with a natural variety of
individual frequencies (∼ 24 h cycle)

▶ their coupling is mediated by a neurotransmitter (GABA)
which diffuses through the spatial medium in which the SCN
cells are embedded
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Synchronization of clock cells

▶ S. Yamaguchi et al., Science 302, 1408 (2003)

▶ since the SCN acts as a pacemaker, in order to generate a
collective single rhythm each clock cell must synchronize its
own frequency

▶ synchronization as a coupling-induced collective phenomenon

▶ coupling is related to the diffusion of GABA in the intercell
medium
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Uncoupled oscillators

▶ phase oscillators are pointlike and occupy fixed positions in a
spatial domain R (bounded or unbounded) in d dimensions

▶ θj : phase of the jth oscillator (j = 1, 2, . . . N)
▶ rj : position vector of the jth oscillator
▶ ωj : natural frequency of the jth oscillator (θ̇j = ωj)
▶ randomly chosen from a unimodal normalized probability

distribution g(ω) (with unit variance)∫ ∞

−∞
dω g(ω) = 1
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Oscillator coupling induced by a mediating substance

▶ in the presence of coupling the oscillator dynamics is linearly
proportional to the local concentration of the mediating
substance A at the oscillator position

θ̇j = ωj +KA(rj , t), (j = 1, 2, . . . N)

▶ K > 0: coupling intensity

▶ all quantities are non-dimensional
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Diffusion with pointlike sources

▶ the substance is produced by all the pointlike oscillators and
diffuses through the spatial region

∂A

∂t
= −η A+D∇2A+

N∑
k=1

h(θk) δ(r− rk)

▶ D: diffusion coefficient, η: coefficient of chemical degradation

▶ the source term for the diffusion equation depends on the
oscillator phases by a (generally nonlinear) function h(.)

▶ suitable initial and boundary conditions have to be specified
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General formulation
▶ diffusion characteristic time is arbitrary with respect to the

oscillator periods (”slow”diffusion)
▶ we have to solve simultaneously the following system of

ordinary/partial differential equations

dθj
dt

= ωj +KA(rj , t) (j = 1, 2, . . . N),

∂A

∂t
+ ηA−D∇2A =

N∑
k=1

h(θk)δ(r− rk),

▶ for appropriate boundary conditions at some limiting surface
∂R, as well as an initial condition profile A(r, t = 0)

▶ the Green function G(r, t; r′, t′), satisfies

∂G

∂t
+ η G−D∇2G = δ(r− r′) δ(t− t′),

▶ homogeneous Dirichlet boundary conditions: G(r, t; r′, t′) for
r ∈ ∂R, and the initial condition G(r, t = 0; r′, t′) = 0
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General formulation
▶ solution of the inhomogeneous equation for absorbing

boundary conditions on ∂R: A(r ∈ ∂R, t) = 0, and initial
profile A(r, t = 0) = 0,

A(r, t) =

N∑
k=1

∫ t

0
dt′G(r, t|rk, t′)h(θk(t′)).

▶ system of integro-differential equations (j = 1, 2, . . . N)

dθj
dt

= ωj +K

N∑
k=1

∫ t

0
dt′G(rj , t; rk, t

′)h(θk(t
′)),

▶ we choose: h(θk) = (1/N) sin(θk − θj)

dθj
dt

= ωj +
K

N

N∑
k=1

∫ t

0
dt′ sin[θk(t

′)− θj(t
′)]G(rj , t; rk, t

′).

▶ main difficulty: the coupling term takes into account all
previous history θ(t′) for 0 ≤ t′ ≤ t



16/50

One-dimensional bounded domain

▶ finite domain 0 ≤ x ≤ L with absorbing boundary conditions
(A(0, t) = A(L, t) = 0) and initial condition A(x, t = 0) = 0

▶ Green function as a superposition of eigenfunctions

G(x, t;x′, t′) =
2H(t− t′)

L

∞∑
n=1

sin
(nπx

L

)
sin

(
nπx′

L

)
×

exp

{
−
[
D
(nπ
L

)2
+ η

]
(t− t′)

}
,

▶ randomly chosen positions {xj}Nj=1 in 0 < x < L

dθj
dt

= ωj +
K

N

N∑
k=1

∫ t

0
dt′ sin[θk(t

′)− θj(t
′)]G(xj , t;xk, t

′),
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Two-dimensional rectangular domain

▶ rectangular domain:0 < x < a, 0 ≤ y ≤ b

G(r, t; r′, t′) =
4H(t− t′)

L

∞∑
n=1

∞∑
m=1

sin
(nπx

a

)
×

sin

(
nπx′

a

)
sin

(mπy

b

)
sin

(
mπy′

b

)
×

exp

{
−
[
D

(
n2

a2
+

m2

b2

)
π2 + η

]
(t− t′)

}
.

▶ oscillators have randomly chosen positions {xj , yj}Nj=1
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Two-dimensional circular domain

▶ circular domain of radius r = a

G(r, ϑ, t; r′, ϑ′, t′) =
1

πD

∞∑
m=−∞

∞∑
n=1

1

[J ′
m(xmn)]

2×

Jm

(
xmn

r

a

)
Jm

(
xmn

r′

a

)
cos[m(ϑ− ϑ′)]×

exp

{
−
(
η +

Dx2mn

a2

)
(t− t′)

}
,

▶ xmn: nth positive root of the Bessel function Jm
▶ randomly chosen positions {rj , ϑj}Nj=1, with 0 ≤ rj < a
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Phase synchronization

▶ Kuramoto complex order parameter

z(t) = R(t) eϕ(t) =
1

N

N∑
k=1

eiθk(t)

▶ order parameter magnitude R(t) =
√
z∗z. After some

transient we take its mean R̄ over a time interval
▶ R̄ ≈ 0: the oscillator phases are uniformly distributed and the

resultant phasor vanishes
▶ R̄ ≈ 1: all the oscillators are phase-synchronized since their

phasors in the unit circle add coherently
▶ numerically R̄ = 0.95 as a threshold for complete phase

synchronization, lower values characterizing partial sync
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Order parameter magnitude vs K

▶ N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

▶ R̄ as a function of the coupling strength K, for D = η = 1,

▶ monotonic increase of R with the coupling strength K,
signaling a synchronization transition roughly at K = 1

▶ rectangular domain [of sides a = b = 1]: the range of K is ten
times higher than for the linear domain

▶ circular domain (radius a = 1): similar range as for
one-dimensional domain (radial symmetry)
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Order parameter magnitude vs η

▶ N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

▶ R̄ as a function of the degradation parameter η, for K = 10
and D = 1.

▶ decrease of R̄ as η increases

▶ since η measures the loss of the substance mediating the
coupling, the basic effect of its increase is the decrease in the
amount of phase synchronization
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Order parameter magnitude vs D

▶ N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

▶ R̄ as a function of the diffusion coefficient D, for K = 10 and
η = 1.0.

▶ R decrease monotonically as D increases: a large D actually
desynchronizes the oscillators

▶ the coupling effect is more effective the longer the mediating
substance remains in the spatial medium in which the
oscillators are embedded

▶ for large D the permanence time of the substance is small,
reducing the coupling effect on synchronization (for absorbing
boundary conditions)
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Frequency synchronization

▶ perturbed oscillator frequencies

Ωj(T ) = lim
t→∞

1

t
{θj(t+ T )− θj(T )}

▶ if uncoupled (K = 0) then Ωj = ωj

▶ frequency synchronization: Ω1 = Ω2 = . . . (up to a given
tolerance)

▶ numerically we found that the above limit always exists and is
independent on T
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Characterizing frequency synchronization

▶ frequency order parameter: we divide the frequency interval
[minΩj ,maxΩj ] into sub-intervals of size δ

▶ consider the fraction of oscillators belonging to the
sub-interval with the largest number of oscillators

▶ if the largest number of oscillators in a given interval is Nmax,
we define a frequency order parameter by P = Nmax/N

▶ if all the oscillators have the same frequency, then P = 1
(frequency synchronization)

▶ if there is no frequency synchronization Nmax ≈ 1 and
P ∼ 1/N → 0 for N ≫ 1

▶ in the numerical simulations we have chosen δ = σ/2001,
where σ =

√
π/8 is the standard deviation of the uncoupled

frequency (Gaussian) distribution

g(ω) =
2

π
e−4ω2/π.
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Frequency synchronization vs D

▶ perturbed oscillator frequencies Ωj in increasing order of their
values

▶ no coupling: Ωj = ωj

▶ (a) K = η = 1.0 and different values of D (linear domain)

▶ (b) rectangular domain and (c) circular domain

▶ larger values of D produce frequency desynchronization just
like they do for oscillator phases (for absorbing boundary
conditions)
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Adiabatic limit
▶ Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995); Y.

Kuramoto and H. Nakao, Physica D 103, 294 (1997)
▶ if the diffusion characteristic time is much smaller than any of

the oscillator periods 2π/ωj , then ∂AE/∂t ≈ 0
▶ the concentration of the substance undergoes a fast relaxation

and converge very rapidly to its stationary limit AE

ηAE −D∇2AE =

N∑
k=1

h(θk)δ(r− rk)

▶ local equilibrium concentration of the mediating chemical

AE(r) =

N∑
k=1

h(θk)GE(r, rk)

▶ GE(r, r
′): Green function for Dirichlet boundary conditions at

the boundary ∂R of the spatial domain

ηGE(r, r
′)−D∇2GE(r, r

′) =

N∑
k=1

δ(r− r′)
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Adiabatic limit

▶ coupled oscillator equations (in the adiabatic limit)

θ̇j = ωj +K

N∑
k=1

h(θk)GE(rj , rk), (j = 1, 2, . . . N).

▶ choosing the nonlinear response function

h(θk) =
1

N
sin(θk − θj),

▶ we have a Kuramoto-like model of coupled phase oscillators

θ̇j = ωj +
K

N

N∑
k=1

sin(θk − θj)GE(rj , rk), (j = 1, 2, . . . N),

▶ for simplicity we choose free boundary conditions:
lim|r|→∞GE(r, r

′) = 0.
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Adiabatic limit: one dimension

▶ equilibrium Green function (free space)

GE(x, t;xk, t
′) =

H(t− t′)e−η(t−t′)√
4πD(t− t′)

exp

{
− (x− xk)

2

4D(t− t′)

}
▶ interaction kernel

σ(rj , rk, t) =

∫ t

0
dt′GE(rk, t; rk, t

′)

▶ the adiabatic limit is equivalent to take the t → ∞ limit in the
interaction kernel

σ(xj , xk) = lim
t→∞

σ(xj , xk, t) =
γ

2η
e−γ(xj−xk)

▶ which is the result previously derived by Kuramoto and Nakao
[Chaos 9, 902 (1999)]
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Adiabatic limit: two and three dimensions
▶ equilibrium Green functions (free space)

GE(r, t; r
′, t) =

H(t− t′)e−η(t−t′)

[4πD(t− t′)]d/2
exp

{
− |r− rk|2

4D(t− t′)

}
▶ interaction kernel in two dimensions (d = 2)

σ(rj , rk, t) =
1

4πD

∫ ∞

u1

du

u
exp

(
−u− a2

u

)
a2 =

γ2|rj − rk|2

4
, u1 =

|rj − rk|2

4Dt
▶ taking the t → ∞ limit

σ(rj , rk) =
1

2πD
K0(γ|rj − rk|)

▶ for the free three-dimensional case

σ(rj , rk) =
1

4πD

1

|rj − rk|
e−γ|rj−rk|

▶ both results agree with those of Nakao [Chaos 9, 902 (1999)]
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One-dimensional case

▶ infinite one-dimensional chain of oscillators

θ̇j = ωj +KC1,j(γ,N)

N∑
k=1

e−γ|xk−xj | sin(θk − θj),

▶ coupling length: γ =
√

η/D,

▶ regular lattices: the oscillator positions are separated by a
fixed distance ∆

▶ periodic boundary conditions

|xk − xj | = ∆×min
{
Ψj

k, N −Ψj
k

}
,

▶ Ψj
k is the remainder of the integer division of |k − j| by N .
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One-dimensional case
▶ normalization condition for the Green functions in d

dimensions ∫
ddr G(r, rk) = 1,

▶ normalization factor

C1,j(γ,N)−1 =

{∑N
k=1 e

−γ|xk−xj | − 1, N even

2
∑(N−1)/2

k=1 e−∆γk. N odd

▶ for N odd this can be put into a symmetrical form

θ̇j = ωj +

KC1,j(γ,N)

(N−1)/2∑
k=1

e−∆γk {sin(θj−k − θj) + sin(θj+k − θj)}

▶ initial conditions θk(t = 0) are randomly chosen from a
uniform probability distribution in [0, 2π)
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One-dimensional case: limits
▶ vanishing coupling length: γ =

√
η/D → 0

▶ normalization factor

C1,j(γ = 0, N) = 1/(N − 1)

▶ rearranging the summations we have

θ̇j = ωj +
1

N − 1

N−1∑
ℓ=1

sin(θℓ − θj)

▶ which is the classical Kuramoto model of global coupling
(all-to-all): each oscillator is influenced by the mean field
caused by all other oscillators

▶ infinitely large coupling length: γ =
√

η/D ≫ 1: only the
k = 1 terms contribute significantly in the summations

▶ the coupling term is proportional to

sin(θj−1 − θj) + sin(θj+1 − θj)

▶ which is the nearest-neighbor (or diffusive) local coupling
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Phase order parameter R̄ and coupling parameters

▶ γ: coupling length, K: strength

▶ small γ: transition from non-synchronized to completely
synchronized states, for K > Kc.

▶ global coupling limit (γ = 0): for N → ∞:
Kc,∞ = 2/πg(0) = 1; for finite N : Kc ≳ Kc,∞

▶ γ ≲ 0.015: increase of Kc, with a narrow ”valley”of
non-synchronized behavior in between (chimera states)

▶ larger γ: synchronization cannot be achieved for 0 ≤ K ≤ 5.0
(local coupling limit)
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Frequency order parameter P and coupling parameters

▶ γ < 0.022: similar behavior in comparison with the phase
order parameter

▶ phase synchronized oscillators are always frequency
synchronized but the converse is not always true

▶ Kc for frequency synchronization should be slightly smaller
than for phase synchronization

▶ γ > 0.02: large frequency order parameter, with phase order
parameter between 0.4 and 0.8 (no valley)
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Two-dimensional case

▶ no boundary surfaces: the Green function is proportional to
the modified Bessel function of the second kind K0(γ|r− rk|),

θ̇j = ωj +KC2,j(γ,N)

N∑
k=1,k ̸=j

K0(γ|rk − rj |) sin(θk − θj),

▶ normalization factor

C2,j(γ,N)−1 =

N∑
k=1,k ̸=j

K0(γ|rk − rj |).
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Rectangular lattice

▶ rectangular lattice with n× n sites with uniform spacing Lx in
the x-axis direction and Ly in the y-axis direction

▶ periodic boundary conditions: distance between two oscillators
located at rk = (i1Lx, j1Ly) and rj = (i2Lx, j2Ly)

|rk − rj | =
√

(∆x)2k,j + (∆y)2k,j ,

(∆x)k,j = Lxmin
{
Ψi2

i1
, n−Ψi2

i1

}
,

(∆y)k,j = Ly min
{
Ψj2

j1
, n−Ψj2

j1

}
.
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Snapshots of the two-dimensional case

▶ ∆ = Lx = Ly = 1 and N2 = 552 = 3025

▶ LEFT (γ = 0.8 and K = 0.9): coexistence of spatial domains
with phase-correlated oscillators

▶ RIGHT (γ = 0.8 and K = 2.5): emergence of spatially
phase-coherent regions
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Order parameters of the two-dimensional case

▶ LEFT: phase order parameter magnitude, RIGHT: frequency
order parameter magnitude

▶ γ small: transition to synchronized behavior for K > Kc ≈ 1.0

▶ difference with the one-dimensional case: range of γ has a
nearly ten-fold increase: a diffusive process in two dimensions
involves a larger range for the same value of γ
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Lesions: removal of oscillators
▶ neurodegenerative conditions (e.g. Alzheimer disease) related

to impairment of neurons and/or their synaptical connections
▶ lesion protocols: given a network initially with N oscillators

and a coupling strength Ki, a number Nd of them is removed
▶ active oscillators: the remaining Na = N −Nd ones
▶ the network is supposed to adapt to these alterations, such

that the coupling strength will vary with the number of
removed oscillators in three possible ways
1. enhanced coupling: K(Nd) = KiN/(N −Nd);
2. invariant coupling: K(Nd) = Ki;
3. reduced coupling: K(Nd) = KiN/(N +Nd)

▶ we choose values of (Ki, γ) which lead to completely
phase-synchronized states and solve the coupled oscillator
equations for a long time, until the transients have died out

▶ then we remove a small quantity of sites and resume
integration, such that the order parameter is recomputed.

▶ the process is repeated until the number of removed
oscillators reaches a specified value of Nd.
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Removal of oscillators (invariant coupling)

▶ Phase order parameter magnitude as a function of time for a
one-dimensional chain with γ = 0.01 and Ki = 4

▶ dashed vertical bars indicate the times at which a small
quantity of sites is removed until we get N = Nd

▶ the order parameter decreases with time in a similar fashion to
the directed percolation scenario

▶ the oscillators are kept synchronized (R > 0.95) until, after a
time ∼ 104, they progressively lose phase synchronization and
eventually become completely non-synchronized.
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Removal of oscillators (one and two dimensions)

▶ average phase order parameter ⟨R⟩ taken over those time
intervals for which the number of active oscillators
Na = N −Nd is constant

▶ we have made for each protocol eight simulations that differ
only in the order of removal of the oscillators
1. invariant coupling: the chain becomes non-synchronized as Nd

is increased
2. enhanced coupling: the chain remains synchronized even if Nd

is as large as 2500, with Ni = 3000
3. reduced coupling: transition to non-synchronized behavior

occurs even before the case for which K does not vary with Nd
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Removal of oscillators (two-dimensional)

▶ the value of Nd for which the lattice start losing
synchronization is practically not affected by the order by
which each oscillator is removed

▶ Ncrit: critical value of Nd, for given K and γ, such that, if
Nd ≥ Ncrit, the lattice cannot synchronize

▶ we estimate the critical fraction of removed oscillators,
fcrit = Ncrit/N , by taking the minimum value of Nd yielding
R(Nd) ≤ 0.9R(Nd = 0)

▶ critical fraction of removed oscillators as a function of γ for
different values of Ki with (a) invariant, (b) reduced coupling
protocols
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Suppression of synchronization in neuronal systems

▶ synchronization in neuronal networks is often related to
pathological rhythms (Parkinson´s disease, essential tremor,
epilepsy, etc.)

▶ deep brain stimulation: suppression of phase synchronization
by an external electrical signal

▶ computer simulation: time-delayed feedback control signal
depending on the local mean field
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Time-delayed feedback control
▶ coupled oscillator equations

θ̇j = ωj +KYj(t)

▶ coupling term

Yj(t) =
∑
k

G(rj , rk, γ) sin(θk(t)− θj(t)).

▶ the values of K and γ are chosen to yield complete
synchronization

▶ external feedback control with time delay τ and amplitude ε

θ̇j = ωj +KYj(t) + εYj(t− τ)H(t− α),

▶ H(t− α) is the Heaviside unit-step function
▶ α is the time after which the control is continuously applied

(chosen after transients have died out)
▶ mean field of the network at a given time

Θ(t) =
1

N

N∑
j=1

θj(t),
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Mean field as diagnostic of synchronization

▶ complete phase synchronization: the mean field will have the
same variation in time as any of the oscillator themselves,
with a finite variance Var(Θ)

▶ no synchronization: for large N the phases are more or less
uniformly distributed over the interval [0, 2π), and the mean
field have fluctuations of low amplitude, and a corresponding
small variance

▶ LEFT (no control): synchronized behavior
▶ RIGHT: delayed feedback control applied at α = 1500, ε = 4,

and τ = 100: partial suppression of synchronization
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Quantifying suppression of synchronization

▶ suppression coefficient (Pikowsky and Rosenblum)

S =
√

Var(Θ)/Var(Θf )

▶ Θf (t): mean field after the control signal has been applied
1. good suppression of synchronization: S > 1
2. no suppression: S = 1
3. enhanced synchronization: 0 < S < 1

▶ S versus τ and ε for a two-dimensional lattice for K = 6.0
and (a) γ = 0.02, (b) 0.4 and (c) 0.6.
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Conclusions

▶ a system of nonlinear integro-differential equations was
obtained to model the coupling among phase oscillators
mediated by a diffusing substance

▶ the coupling term is nonlocal and depends on the previous
history of the oscillators dynamical behavior

▶ in the fast relaxation (adiabatic) limit the local concentration
of the mediating substance achieves instantaneously its
equilibrium value: system of coupled differential equations (no
memory effects)

▶ the corresponding Green function depends on the geometry
and the (absorbing) boundary conditions

▶ three geometries have been investigated: bounded linear,
rectangular and circular domains

▶ in the adiabatic limit (diffusion occurs instantaneously) the
expressions reduce to those previously obtained
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Conclusions

▶ collective behavior: phase and frequency synchronization
(order parameters)

▶ increase with coupling strength: transition between
non-synchronized and synchronized states

▶ increasing degradation coefficient reduces synchronization
(less mediating substance at local level)

▶ similar effect for increasing diffusion coefficient: reduces
permanence time in the diffusion region (absorbing boundary
conditions)

▶ lesions (removal of oscillators): three protocols. Coupling
strength has to increase to keep synchronization

▶ external time-delayed feedback control: suppression of
synchronization
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Future works and perspectives

▶ coupling equations can be extended for nonlinear dynamical
systems (flows and maps)

▶ reflecting boundary conditions can be introduced (but Green´s
functions are more complicated!)

▶ coupling can be mediated by the emission and absorption of
waves (finite propagation speed): ”retarded potentials”

▶ it is possible to include advection effects in the diffusion
equation (asymmetric coupling)

▶ chemotaxis: include motion of the pointlike oscillators,
according to a chemotactic force F = K∇A. The chemical
coupling equations must be coupled to Newtonian equations
of motion Fj = mr̈j for each oscillator

▶ a wealth of cases of potential interest in microbiology/cell
biology (Dictyostelium sp.)
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