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Introduction
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phase oscillators are simple models for many dynamical
systems of physical and biological interest

assemblies of phase oscillators can present collective behavior,
like phase and frequency synchronization

synchronization is often caused by interactions among phase
oscillators, even when they are slightly different

the interaction among phase oscillators can be mediated by a
chemical which diffuses along " cells” (pointlike systems)

the coupling is non-local, and takes into account the relative
distances among oscillators

this work: how are the synchronization properties influenced
by coupling parameters characteristic of a diffusion-mediated
interaction?

our answer involves the numerical solution of a system of
integro-differential equations, containing the Green's functions
related to the boundary conditions and the geometrical details



Phase

oscillators
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Change of variables

Limit cycle in
phase space d%f =a

one-dimensional dynamical systems defined on a topological
circle S1

characterized by a geometrical phase 6 which varies with time
according to a given frequency w

ﬁ:w, 0<0<2m
dt

often appear from a stable limit-cycle in phase space, after a
suitable change of variables

simple mathematical models of periodic phenomena of
physical and biological interest



Van der Pol system
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electronic circuit with nonlinear element (triode,
semiconductor, ...)

x: current through the capacitor (time-rate y)
i=y, g=p(l-2P)y—=

1 #£ 0: stable limit-cycle in the phase plane z — y
relaxation oscillations

geometrical phase: 6(t) = arctan[y(t)/x(t)]



Bursting neurons
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» bursting: rapid sequence of spikes (membrane potential), after

a quiescent period

» bursting phase: defined in terms of the (discrete) times at
which at which a kth burst begins (n) and ends (nx41)

— ng

O(n) = 2wk + 27rn7, (nk <n < ngy1)

Ng+1 — Nk

» bursting frequency: w = (8(n) — 6(0))/n



Synchronization of phase oscillators

» each firefly flashes periodically: an individual phase oscillator

> fireflies synchronize their flashing rhythms through their visual
interaction

> since the velocity of light is large the coupling is instantaneous
(mean-field effect)

> "classical” Kuramoto model (global coupling)

: K ‘
0; = w; + N ZSIH(@j — Hi)
J



Clock cells in SCN

» suprachiasmatic nucleus (SCN): small region in the brain
hypothalamus whose function is to control circadian rhythms
(photic stimulation)

> it contains circa 10% clock cells with a natural variety of
individual frequencies (~ 24 h cycle)

» their coupling is mediated by a neurotransmitter (GABA)
which diffuses through the spatial medium in which the SCN
cells are embedded



Synchronization of clock cells
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S. Yamaguchi et al., Science 302, 1408 (2003)

since the SCN acts as a pacemaker, in order to generate a
collective single rhythm each clock cell must synchronize its
own frequency

synchronization as a coupling-induced collective phenomenon
coupling is related to the diffusion of GABA in the intercell
medium



Uncoupled oscillators
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phase oscillators are pointlike and occupy fixed positions in a
spatial domain R (bounded or unbounded) in d dimensions
6;: phase of the jth oscillator (j =1,2,...N)

r;: position vector of the jth oscillator

w;: natural frequency of the jth oscillator (6; = w;)
randomly chosen from a unimodal normalized probability
distribution g(w) (with unit variance)

[ desto -



Oscillator coupling induced by a mediating substance

» in the presence of coupling the oscillator dynamics is linearly
proportional to the local concentration of the mediating
substance A at the oscillator position

éjzwj—i—KA(rj,t), (j=1,2,...N)

» K > 0: coupling intensity
» all quantities are non-dimensional



Diffusion with pointlike sources

P the substance is produced by all the pointlike oscillators and
diffuses through the spatial region

0A N
_ 2
5 nA+ DV A+,§1h(0k)5<r_rk)
» D: diffusion coefficient, n: coefficient of chemical degradation

» the source term for the diffusion equation depends on the
oscillator phases by a (generally nonlinear) function h(.)

P suitable initial and boundary conditions have to be specified



General formulation
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diffusion characteristic time is arbitrary with respect to the
oscillator periods (" slow” diffusion)

we have to solve simultaneously the following system of
ordinary/partial differential equations

do;

d—tf = wj + KA(rj,t) (j=1,2,...N),
0A
e +nA— DV?A = Zh (k)0 (r — rg),

k=1
for appropriate boundary conditions at some limiting surface
OR, as well as an initial condition profile A(r,¢ = 0)
the Green function G(r,t;1’,t'), satisfies

%f +7nG—DV2G =6(r—1)o(t —t),

homogeneous Dirichlet boundary conditions: G(r,¢;r/,t’) for
r € OR, and the initial condition G(x,t =0;1',t') =0



General formulation

>

solution of the inhomogeneous equation for absorbing
boundary conditions on OR: A(r € IR, t) = 0, and initial
profile A(r,t =0) =0,

Z/ dt’ G(r, tlrg, t') h(Or(t)).

system of integro-differential equations (j = 1,2,...N)

do;

_w]+KZ/ dt'G(rj, t;rg, t') h(0 (1)),

we choose: h(fy) = (1/N)sin(by — 6;)

d9 Z/ dt’ sin[0x(t") — 0;(t')]G(rj, t; T, ).

main difficulty: the coupling term takes into account all
previous history 6(t') for 0 <t' <t



One-dimensional bounded domain

» finite domain 0 < & < L with absorbing boundary conditions
(A(0,t) = A(L,t) = 0) and initial condition A(z,t =0) =0
» Green function as a superposition of eigenfunctions

2H(t —t') & nwx nma’
A . .
Gz, t; 2’ t) = —7 g_ sin (T) sin | —— ) X
nm\ 2 ,
exp § — D<—> +nl(t—t)¢,
L
» randomly chosen positions {xj} ,in0<z<L

do;
By & Z/ dt' s[04 (') — 0;()]G (x5, 5 2, 1),



Two-dimensional rectangular domain

P rectangular domain0 <z <a, 0<y<b

oo o0

G(r,t;r',t) = H tit/ Z > s (mm>

n=1m=1

/ /
sin (m;aj > sin (m;ry) sin (mzy ) X
2 2
eXp{— [D (n + 7:2) 7r2+77} (t—t’)}.

» oscillators have randomly chosen positions {z;, yj}j.vzl




Two-dimensional circular domain

» circular domain of radius r = a

G(r, 0, t;7" 0 ') —FD Z Z

m=—oo n= 1 xm”)

Tim (xmng) I <:cmn7;> cos[m (9 — 9')] x

eXp{— (n+ DZE’”‘") (t—t’)},

» Z..n: nth positive root of the Bessel function J,,
» randomly chosen positions {rj,ﬁj};.v:l, with 0 <7; < a




Phase

synchronization

0 R<l

Kuramoto complex order parameter

N

1 ,
— o(t) _ 10k (t
z2(t) =R(t)e ()ng_le k(®)

order parameter magnitude R(t) = v/z*z. After some
transient we take its mean R over a time interval

R ~ 0: the oscillator phases are uniformly distributed and the
resultant phasor vanishes

R ~ 1: all the oscillators are phase-synchronized since their
phasors in the unit circle add coherently

numerically R = 0.95 as a threshold for complete phase
synchronization, lower values characterizing partial sync



Order parameter magnitude vs K

» N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

» R as a function of the coupling strength K, for D =n = 1,

» monotonic increase of R with the coupling strength K,
signaling a synchronization transition roughly at K =1

» rectangular domain [of sides a = b = 1]: the range of K is ten
times higher than for the linear domain

» circular domain (radius a = 1): similar range as for
one-dimensional domain (radial symmetry)



Order parameter magnitude vs 7

» N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

» R as a function of the degradation parameter 7, for K = 10
and D = 1.

» decrease of R as 7 increases

P since 17 measures the loss of the substance mediating the
coupling, the basic effect of its increase is the decrease in the
amount of phase synchronization



Order parameter magnitude vs D
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N = 100 oscillators randomly distributed in (a) linear, (b)
rectangular, (c) circular domains

R as a function of the diffusion coefficient D, for K = 10 and
n = 1.0.

R decrease monotonically as D increases: a large D actually
desynchronizes the oscillators

the coupling effect is more effective the longer the mediating
substance remains in the spatial medium in which the
oscillators are embedded

for large D the permanence time of the substance is small,
reducing the coupling effect on synchronization (for absorbing
boundary conditions)



Frequency synchronization

Phase syncheanizaticn Frequency synchronization

wr (B (© (J“) (:f‘ ' @ Q m )

» perturbed oscillator frequencies
o1
(T) = lim 5 {6;(t+T) = 0,(T)}

» if uncoupled (K = 0) then Q; = w;
» frequency synchronization: Q3 = Q9 = ... (up to a given
tolerance)

» numerically we found that the above limit always exists and is
independent on T'



Characterizing frequency synchronization
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frequency order parameter: we divide the frequency interval
[min ;, max €2;] into sub-intervals of size §

consider the fraction of oscillators belonging to the
sub-interval with the largest number of oscillators

if the largest number of oscillators in a given interval is Npqz,
we define a frequency order parameter by P = N4, /N

if all the oscillators have the same frequency, then P =1
(frequency synchronization)

if there is no frequency synchronization N,,.. =~ 1 and
P~1/N—0for N>1

in the numerical simulations we have chosen § = ¢/2001,

where 0 = /7 /8 is the standard deviation of the uncoupled
frequency (Gaussian) distribution

2 42
Ze 4w /7r‘
T

g(w) =



Frequency synchronization vs D

oms{ @ oms| ® £ oois{ @ o

i By P o

» perturbed oscillator frequencies €2; in increasing order of their
values

> no coupling: Q; = w;

» (a) K =n = 1.0 and different values of D (linear domain)

» (b) rectangular domain and (c) circular domain

» larger values of D produce frequency desynchronization just

like they do for oscillator phases (for absorbing boundary
conditions)



Adiabatic limit
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Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995); Y.
Kuramoto and H. Nakao, Physica D 103, 294 (1997)
if the diffusion characteristic time is much smaller than any of
the oscillator periods 27 /w;, then 0AE/0t ~ 0
the concentration of the substance undergoes a fast relaxation
and converge very rapidly to its stationary limit Ag
N
T]AE - DV2AE = Z h(@k)(S(I‘ — rk)
k=1
local equilibrium concentration of the mediating chemical

N
Ap(r) = h(6k)Gp(r,ry)
k=1
Gp(r,r'): Green function for Dirichlet boundary conditions at
the boundary R of the spatial domain
N
nGe(r,r') — DV2Gg(r,r') = Z 5(r—1')

L.—1



Adiabatic limit

» coupled oscillator equations (in the adiabatic limit)

N

éj:LUj‘FKZh(ek)GE(rjvrk)? (]:1727N)
k=1

» choosing the nonlinear response function

I
h(0k) = ~ sin(0x — 0;),

» we have a Kuramoto-like model of coupled phase oscillators

N
0; = w; —I—ng_l Sln(@k—gj)GE(I‘j,I‘k), (j=1,2,...N),

» for simplicity we choose free boundary conditions:
hm|r\%oo GE(I', I'/) = 0.



Adiabatic limit: one dimension
» equilibrium Green function (free space)

o HE-De [ ()
GE($,t,$k,t)— 47TD(t—t/) €xXp 4D(t—t/)

» interaction kernel

t
O'(I'j,I'k,t):/ dt/GE(rkvt;rkvt/)
0

» the adiabatic limit is equivalent to take the ¢ — oo limit in the
interaction kernel

l e_"/(zj_$k)

o(zj,xp) = lim o(zj, zy,t) = 2

» which is the result previously derived by Kuramoto and Nakao
[Chaos 9, 902 (1999)]



Adiabatic limit: two and three dimensions

» equilibrium Green functions (free space)
H(t —t)e =) Ir —ri|?
Gg(r,t;r' t) = expy ————
( ) [AxD(t — t')]Y/? AD(t —t')

» interaction kernel in two dimensions (d = 2)

a2
o(rj,r,t) 47rD — exp —u — ;)

2
Y |rj*rk| vy — T
@2 = 4 0 T Dy
» taking the ¢ — oo limit
1
o(rj,ry) = ﬁKO( Yl — 1)
» for the free three-dimensional case
1 1

, NS 10 g
o (x:Tk) 47D |rj — vy c

» both results agree with those of Nakao [Chaos 9, 902 (1999)]



One-dimensional case

L

» infinite one-dimensional chain of oscillators

N
0 = wj+ KCi;(v,N)Y_ e lsin(0y — 6)),
k=1

» coupling length: v = /n/D,
P regular lattices: the oscillator positions are separated by a
fixed distance A

P periodic boundary conditions
= ;) = & min { o], N — Wi,

> \Ili is the remainder of the integer division of |k — j| by N.



One-dimensional case

» normalization condition for the Green functions in d
dimensions

/ddr G(r,ry) =1,

» normalization factor

chvzl e ezl 1 Neven

-1
Cri(v,N) = {ngl—l)ﬂ e~ Ak, N odd

» for NV odd this can be put into a symmetrical form
éj = Wy +

(N-1)/2
KCi(v,N) > e 2% {sin(0;_y, — 0;) + sin(0;4r — 0;)}
k=1

» initial conditions 6 (t = 0) are randomly chosen from a
uniform probability distribution in [0, 27)



One-dimensional case: limits
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vanishing coupling length: v = \/n/D — 0
normalization factor

C1(y=0,N)=1/(N—-1)

rearranging the summations we have
;| Nl
9j = Wj + m Zz_} Sin(&g — QJ)

which is the classical Kuramoto model of global coupling
(all-to-all): each oscillator is influenced by the mean field
caused by all other oscillators

infinitely large coupling length: v = \/n/D > 1: only the
k =1 terms contribute significantly in the summations
the coupling term is proportional to

Sin(ej,1 — Gj) + Sin(9j+1 — 93)

which is the nearest-neighbor (or diffusive) local coupling



Phase order parameter R and coupling parameters
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» ~: coupling length, K: strength

» small v: transition from non-synchronized to completely
synchronized states, for K > K.

» global coupling limit (v = 0): for N — oc:
Ko =2/mg(0) = 1; for finite N: K. 2 K¢ oo

» ~ < 0.015: increase of K., with a narrow "valley” of
non-synchronized behavior in between (chimera states)

» larger v: synchronization cannot be achieved for 0 < K < 5.0
(local coupling limit)



Frequency order parameter P and coupling parameters
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> v < 0.022: similar behavior in comparison with the phase
order parameter

» phase synchronized oscillators are always frequency
synchronized but the converse is not always true

» K. for frequency synchronization should be slightly smaller
than for phase synchronization

> ~ > 0.02: large frequency order parameter, with phase order
parameter between 0.4 and 0.8 (no valley)



Two-dimensional case

» no boundary surfaces: the Green function is proportional to
the modified Bessel function of the second kind KCo(7v|r — rg|),

N

0; = w; + KCoj(v,N) Y Ko(y[re — v ]) sin(6), — 6;),
k=1,k#j

» normalization factor

N
Coj(7, N) ™' = Z Ko(y|re —rj]).
k=Lkj



Rectangular lattice

» rectangular lattice with n x n sites with uniform spacing L, in
the x-axis direction and L, in the y-axis direction

P periodic boundary conditions: distance between two oscillators
located at ry, = (i1 Lg, j1Ly) and r; = (i2Ly, joLy)

=15l =\ (An)}; + (Aw)E

(Az),; = L, min {qﬂ? n— q;;ij} ,

217

(Ay)y,; = Lymin{\llﬁ,n = \Ilﬁ}



Snapshots of the two-dimensional case

» A=L,=1L,=1and N? =55? = 3025
» LEFT (v = 0.8 and K = 0.9): coexistence of spatial domains
with phase-correlated oscillators

» RIGHT (y = 0.8 and K = 2.5): emergence of spatially
phase-coherent regions



Order parameters of the two-dimensional case

0.91
0.81
0.71
0.61
0.51
0.41
031
0.21
0.11
0.01

» LEFT: phase order parameter magnitude, RIGHT: frequency
order parameter magnitude

» ~ small: transition to synchronized behavior for K > K, ~ 1.0

> difference with the one-dimensional case: range of « has a
nearly ten-fold increase: a diffusive process in two dimensions
involves a larger range for the same value of ~



Lesions: removal of oscillators
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neurodegenerative conditions (e.g. Alzheimer disease) related
to impairment of neurons and/or their synaptical connections
lesion protocols: given a network initially with N oscillators
and a coupling strength K;, a number Ny of them is removed
active oscillators: the remaining N, = N — N, ones
the network is supposed to adapt to these alterations, such
that the coupling strength will vary with the number of
removed oscillators in three possible ways

1. enhanced coupling: K(Ny) = K;N/(N — Ny);

2. invariant coupling: K(Ny) = K;;

3. reduced coupling: K(Ny) = K;N/(N + Ny)
we choose values of (Kj;,7) which lead to completely
phase-synchronized states and solve the coupled oscillator
equations for a long time, until the transients have died out
then we remove a small quantity of sites and resume
integration, such that the order parameter is recomputed.
the process is repeated until the number of removed
oscillators reaches a specified value of Ng.



Removal of oscillators (invariant coupling)

» Phase order parameter magnitude as a function of time for a
one-dimensional chain with v = 0.01 and K; =4

» dashed vertical bars indicate the times at which a small
quantity of sites is removed until we get N = Ny

» the order parameter decreases with time in a similar fashion to
the directed percolation scenario

> the oscillators are kept synchronized (R > 0.95) until, after a
time ~ 10, they progressively lose phase synchronization and
eventually become completely non-synchronized.



Removal of oscillators (one and two dimensions)
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average phase order parameter (R) taken over those time
intervals for which the number of active oscillators
N, = N — N, is constant
we have made for each protocol eight simulations that differ
only in the order of removal of the oscillators
1. invariant coupling: the chain becomes non-synchronized as Ny
is increased
2. enhanced coupling: the chain remains synchronized even if Ny
is as large as 2500, with N; = 3000
3. reduced coupling: transition to non-synchronized behavior
occurs even before the case for which' K“does not vary with” Ny



Removal of oscillators (two-dimensional)
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the value of Ny for which the lattice start losing
synchronization is practically not affected by the order by
which each oscillator is removed

Nepit: critical value of Ny, for given K and +, such that, if
Ny > Ngpit, the lattice cannot synchronize

we estimate the critical fraction of removed oscillators,

ferit = Nerie/N, by taking the minimum value of Ny yielding
R(Ny4) <0.9R(Ny =0)

critical fraction of removed oscillators as a function of ~ for
different values of K; with (a) invariant, (b) reduced coupling



Suppression of synchronization in neuronal systems

DEEP BRAIN
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» synchronization in neuronal networks is often related to
pathological rhythms (Parkinson ‘s disease, essential tremor,
epilepsy, etc.)

» deep brain stimulation: suppression of phase synchronization
by an external electrical signal

» computer simulation: time-delayed feedback control signal
depending on the local mean field



Time-delayed feedback control
» coupled oscillator equations
0; = w; + KY;(t)
» coupling term

Yi(t) =Y Glrj,re,7) sin(0r(t) — 0;(t)).
k

» the values of K and ~ are chosen to yield complete
synchronization
> external feedback control with time delay 7 and amplitude ¢

0; = wj + KYj(t) +eYj(t — T)H(t — o),

» H(t— «) is the Heaviside unit-step function

P> « is the time after which the control is continuously applied
(chosen after transients have died out)

> mean field of the network at a given time

1 N
0(t) = D 05(t),
j=1



Mean field as diagnostic of synchronization

1000 2000 3000 4000 5000 6000 1000 2000 3000 2000 5000 6000
t t

» complete phase synchronization: the mean field will have the
same variation in time as any of the oscillator themselves,
with a finite variance Var(©)

» no synchronization: for large N the phases are more or less
uniformly distributed over the interval [0,27), and the mean
field have fluctuations of low amplitude, and a corresponding
small variance

» LEFT (no control): synchronized behavior

» RIGHT: delayed feedback control applied at a = 1500, € = 4,
and 7 = 100: partial suppression of synchronization



Quantifying suppression of synchronization

» suppression coefficient (Pikowsky and Rosenblum)

§ =/ Var(©)/Var(9y)

» Oy(t): mean field after the control signal has been applied
1. good suppression of synchronization: S > 1
2. no suppression: S =1
3. enhanced synchronization: 0 < S < 1
» S versus 7 and ¢ for a two-dimensional lattice for K = 6.0
and (a) v = 0.02, (b) 0.4 and (c) 0.6.



Conclusions

P a system of nonlinear integro-differential equations was
obtained to model the coupling among phase oscillators
mediated by a diffusing substance

» the coupling term is nonlocal and depends on the previous
history of the oscillators dynamical behavior

» in the fast relaxation (adiabatic) limit the local concentration
of the mediating substance achieves instantaneously its
equilibrium value: system of coupled differential equations (no
memory effects)

» the corresponding Green function depends on the geometry
and the (absorbing) boundary conditions

P three geometries have been investigated: bounded linear,
rectangular and circular domains

» in the adiabatic limit (diffusion occurs instantaneously) the
expressions reduce to those previously obtained



Conclusions

P collective behavior: phase and frequency synchronization
(order parameters)

P increase with coupling strength: transition between
non-synchronized and synchronized states

» increasing degradation coefficient reduces synchronization
(less mediating substance at local level)

» similar effect for increasing diffusion coefficient: reduces
permanence time in the diffusion region (absorbing boundary
conditions)

» lesions (removal of oscillators): three protocols. Coupling
strength has to increase to keep synchronization

> external time-delayed feedback control: suppression of
synchronization



Future works and perspectives

» coupling equations can be extended for nonlinear dynamical
systems (flows and maps)

» reflecting boundary conditions can be introduced (but Green’s
functions are more complicated!)

» coupling can be mediated by the emission and absorption of
waves (finite propagation speed): "retarded potentials”

> it is possible to include advection effects in the diffusion
equation (asymmetric coupling)

» chemotaxis: include motion of the pointlike oscillators,
according to a chemotactic force F = KV A. The chemical
coupling equations must be coupled to Newtonian equations
of motion F; = m¥; for each oscillator

> a wealth of cases of potential interest in microbiology/cell
biology (Dictyostelium sp.)
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diffusion of a substance, Braz. J. Phys. 53, 114 (2023).

=} = = = DA™ 50/50



	Introduction
	Model
	General case
	Adiabatic limit
	Removal of oscillators
	Time-delayed feedback control
	Conclusions

