The LHC era: exploring the TeV scale

- → 2-fold increase in statistics by the end of Run 3
- → 20-fold increase in statistics by the end of HL-LHC!

- **Run 1**: Higgs discovery
- Run 2: Higgs couplings
 - outperformed expectations
- Run 3 to HL-LHC
 - Higgs precision program
 - Unique top physics reach till the next high-energy collider
 - ➢ e⁺e⁻ > 500 GeV
 - ➢ pp@100 TeV
 - \succ μ⁺μ[−] > 10 TeV
 - > Discovery?

Statistical limitations will be overcome for a very large number of observables

The breadth of collider physics program: a unique spectrum of SM measurements and BSM direct searches!

The realization of this program largely depend on theoretical progress

Higgs From prediction to discovery to precision

Global fits of precision EW observables gave us strong indications of where to find the SM Higgs boson and we now use its mass as one of the EW precision observables of the EW global fit to constrain new physics.

Future directions: energy and precision

Answering the big Open Questions via energy and precision
 ➢ Origin of the EW scale (SSB via Higgs mechanism, naturalness, flavor)
 ➢ Origin of Baryon Asymmetry, Dark Matter, Dark Energy
 ➢ ...

Given the level of consistency of the SM, and no clear evidence of new particles in LHC searches so far, we expect new physics effects to be small.

Precision affects the sensitivity to both direct and indirect effects of new physics since it enhances sensitivity to small deviations.

EF Snowmass Report, 2211.11084

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start Date	
			e^-/e^+	${ m ab}^{-1}~/{ m IP}$	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	$250 {\rm GeV}$	$\pm 80/\pm 30$	2	2028	2038
		$350 {\rm GeV}$	$\pm 80/\pm 30$	0.2		
		$500 {\rm GeV}$	$\pm 80/\pm 30$	4		
		1 TeV	$\pm 80/\pm 20$	8		
CLIC	ee	380 GeV	$\pm 80/0$	1	2041	2048
CEPC	ee	M_Z		50	2026	2035
		$2M_W$		3		
		$240 {\rm GeV}$		10		
		$360 {\rm GeV}$		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		$240 \mathrm{GeV}$		2.5		
		$2 M_{top}$		0.8		
μ -collider	$\mu\mu$	125 GeV		0.02		

Snowmass 21: EF Benchmark Scenarios

Multi-TeV colliders (> 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start	Date
			. e^{-}/e^{+}	ab^{-1}/IP	Const.	Physics
HE-LHC	pp	$27 { m TeV}$		15		
FCC-hh	pp	$100 { m TeV}$		30	2063	2074
SppC	pp	75-125 TeV		10-20		2055
LHeC	ep	1.3 TeV		1		
FCC-eh		$3.5 { m ~TeV}$		2		
CLIC	ee	$1.5 \mathrm{TeV}$	$\pm 80/0$	2.5	2052	2058
		$3.0 { m TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		$10 { m TeV}$		10		

Timelines are taken from the Collider ITF report (arXiv: 2208.06030)

- or "why coulder Physics" tesson

) Introductory remarks

· "Collider physics" or the physics of the high-energy collision of elementary pertider -L> this is the domain from where most of our knowhage of subatomic physics her come 50 fer. the idea is simple: collide head-on two focused hours of very energetic particles (etc. PP. PF), with equal & opposite momenta, and measure the outcome with cleaver detectors that can isolate and identify the different kinds of perticles produced in the colling bend on their properties. center of momentory frame $\mathcal{F}_{1} = \left(\mathcal{E}_{1}, 0, 0, \mathcal{F}_{1} \right)$ $\overline{p}_1 + \overline{p}_2 = 0$ H.E. collider $P_2 = (E_2, O_1 O_1, \overline{P_2})$ If $P_1 \neq P_2$ this condition is not perticheser verified in the 10b. fraule 'actracklafivishic $S = (P_{1}+P_{2})^{2} = (E_{1}+E_{2})^{2}$ butif Pi=P2 it15. $V_{S} = E_{CH} \left(= 2E_{1} = 2E_{2} = 2E_{beau} \right)$ torentz frame inveriant independent $i \neq w_1 = w_2$ good choice to define the properties of a collider For comparison : fixed terget exp. (P=0) $S = (P_{1}+P_{2})^{2} = w_{1}^{2} + w_{2}^{2} + 2P_{1}P_{2} = w_{1}^{2} + w_{2}^{2} + 2E_{1}w_{2}$ $V_{5} \simeq \sqrt{2E_{1}w_{2}} \quad (E_{1} > w_{1}, w_{2})$

We need to remember that in eter colliders the fire Ecr is evaluable in the final-state and "useble" to reach the desired energy threshold, while at hh (h=hadron) colliders only a fraction of it is.

Let this is compensated however by the fect
that hadron coelider conreach higher Ear
WHY? because they do not loose much energy
to synchrotron radiation
$$\Delta E \propto \frac{1}{R} \left(\frac{E}{m}\right)^4$$
 (M/SMe)

realiss of a circuler acalerator

So, to reach high ECH; -> lepton colliders need to be lincer (and long) -> heatron colliders cere be aircular (with lerge R)

Once we know the VS=ECH, we can calculate the probability for a given process to happen, i.e. the probability of a giran enat.

L's proportional to what we call the
"aross section" for a given procend (ab-sx)
" which we calculate in the well-defined
francework of QFT, for a given theory.
Example
$$\rightarrow$$
 the standard Hodel (SM)
or any of its BSIT extensions, including
generic EFT extensions.

(we will see server examplet in the course of these) heteres. fast, in order to estimate the rate with which a given kind of events are produced at a specific collider, we need to colculate how many one-on-one collisions hoppen per mittime. We need to consider "A" (the cross area of the beams)

-> we need to consider in (internet) and "f" (the bunch crossing frequency, since perfider in the beams come in buncher)

$$\frac{[\bullet,\cdot]}{(++)} \xrightarrow{[\bullet,\cdot]} \xrightarrow{[\bullet]} \xrightarrow{[\bullet,\cdot]} \xrightarrow{[\bullet]} \xrightarrow{[\bullet,\cdot]} \xrightarrow{[\bullet]} \xrightarrow{[\bullet,\cdot]} \xrightarrow{[\bullet,\bullet]} \xrightarrow$$

"Integrated
$$y \rightarrow y \rightarrow y$$
 given by f integrated
source given true (ex. true of running)
 $Ex. : FHC has $f = 10^{34} \operatorname{cu}^2 \operatorname{s}^{-1} = 10 \operatorname{H}_2/\operatorname{nb}$
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ Linemobern
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ Linemobern
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ $10^{-3} \operatorname{ken}$
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ $10^{-3} \operatorname{ken}$
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ $10^{-3} \operatorname{ken}$
 $(\longrightarrow 10^{34} \operatorname{coll} \operatorname{sion} / \operatorname{au}^3 / \operatorname{s})$ $10^{-3} \operatorname{ken}$
 $(\longrightarrow 10^{-3} \operatorname{ken} \to 10 \operatorname{crents} / \operatorname{kc})$
 $\operatorname{order} to collect the derived nonuber of cheats.$
Now : life is not that multe --.
 $\operatorname{Ls} R \rightarrow R \cdot \mathcal{E}$ $(\operatorname{vlo}^{-2})$
 $\operatorname{Ls} \operatorname{cleteor} \operatorname{cleaner} \operatorname{of enerts})$
 $\operatorname{Ls} \operatorname{cleteor} \operatorname{cleaner} \operatorname{of enerts}$
 $(\operatorname{in relecting} \operatorname{given cleaner} \operatorname{of enerts})$
 $\operatorname{Ls} \operatorname{starticler} \operatorname{decay} \operatorname{nud} \operatorname{expenineults} \operatorname{uncenvec}$
the decay products.
 $5^{-} \rightarrow 5^{-} \operatorname{Br}$
 $\operatorname{Ls} \operatorname{rent} (1 - 10^{-3} \operatorname{or lower})$
 $(\operatorname{IS}, \mathcal{L})$ define the proferities
 $(\operatorname{IS}, \mathcal{L})$ define the proferities
 $\operatorname{starticler} (\operatorname{IS} \operatorname{currder})$
 $\operatorname{Ls} \operatorname{supportune}$ $\operatorname{supportune}$
 $\operatorname{Is} \operatorname{supportune}$ $\operatorname{supportune}$
 $\operatorname{Is} \operatorname{supportune}$ $\operatorname{supportune}$ $\operatorname{supportune}$
 $\operatorname{Is} \operatorname{supportune}$ $\operatorname{supportune}$ $\operatorname{supportune}$
 $\operatorname{supportune}$ $\operatorname{supportun$$

Estimate the # of High boson produced by Run 2, or by the end of the HL-LHC. What about future collider?

	2 4	x muples of po	nst, pretent, au	ud future co	llidevo
10	Collider	$\sqrt{s(fev)}$	$(L(cm^{2}s^{-1}))$ $L(45^{-1})$	Years of opertn.	Detectors
Ø	+EP (ete)	91.2 (LEP1) 130-209 (LEP2)	$ \simeq 200 (LEP1) $ $ \simeq 600 (LEP2) $ $ (L \simeq 10^{31} \rightarrow 10^{32}) $	1989-95 1996-2000	ALEPH, DELPHI, L3, OPAL (CERN)
Ø	SFC (efe)	91,2	20 $(2 \simeq 10^{31})$	1989-98	SF-D (SLAE)
Ø	Hera (ép)	320	500 $(2 \sim 10^{31})$	1992-2007	ZEUS,HI (DESY)
Ø	Tevatron (PP) (6.3 km.)	1800 (Runi) 1960 (Runz)	60 (Ren1) $10^{4} (Ren2)$ $(L \simeq 10^{32})$	1987-96 2001 - 11	CDF, DØ (FNAL)

(3) Why the future?
Losse hetwar on SH and Legond (C. Grogen)
Atu a nutched:
Lo understanding the acaler sector of the
SH

$$\rightarrow$$
 Hiffs-Lossen mean $\rightarrow EW$ neale
 \rightarrow Hiffs to hetwice (Wht?)
 \rightarrow Yokewar rector: wolling to kermions
(-> oright of flavor)
Los Directed explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is is het-explore the \geq 10 Tev neale
 $+h$ is hered's to be
 $=$ elaborated more
 $=$ $-\frac{1}{2} = \frac{1}{2} = \frac$

"finite"
$$\simeq (c_{\mu}u_{s,R}^{2} + c_{2}u_{f,R}^{2}) + f(u_{s,R})u_{f,R}(t_{s,R})t_{f,R})$$

if grows as the wear of any soder /finitem
In the loop.
L > H_H not protected against large
grantow corrections.
Direct wink to BSH
Show $\rightarrow X$ not too large
finduning $\rightarrow X$ not too large
finduning $(-+x \approx 10 \text{ Tev})$
In contrast:
 $u_{f}^{2} \rightarrow 8u_{f}^{2} \rightarrow \frac{1}{2} \int_{e}^{e_{f}} + \frac{1}{2} \int$

Bibliography

· fectures on collider physics - General

- Tao Han " Collider phenomenology" hep-ph/0508097
- Hatthew Schwartz "TASI Lecturer on collider phynics" arxiv: 1709.04533
- Maxim Pereletein "Introduction to collider physics"
 arxiv; 1002.0274
- · Many recordings!

Books

- "QCD and collider physics" Ly Ellis, Stirling & Webber
 "collider thymes" by Barger & Phillips
- QFT books (my fororite one for this purpose would be M. Schwartz's book)
- the history of collider physics is percinating
 the experimental pundations of pertide physics "
 by Cohn & Gridheber

· Collider - technology

- Shictser & Zimmermann "Modern & Future Colliders" arXIV: 2003,09084
- Roser et al. " on the feasibility of tuture colliders" arxiv: 2208.05030

-> Recordings exist for many of them tectures -> PDF scider are evailable for most of them. TASI fictury on "Futur Colliders" - Mongono avxir : 1905.07489