Neutrino interactions Dan Pershey (Florida State University) – Jul 16, 2024

Second school on neutrino and dark matter detection South American Institute for Fundamental Research

Neutrino-nucleus scattering across energy scales

keV

MeV

GeV

CEvNS: nuclei acquire small kinetic energy

Transitions in nuclear shell state. Important for astrophysics! Messy! QCD involved in multiple and complicated ways. Many oscillation experiments here Scattering off quarks. Nucleus scattered, but easily modeled

keV The elastic regime CEvNS

Neutrino interactions and fundamental physics

= new force

Dark sectors particles:

- 1: electrically neutral
- 2: feeble interactions and light
- 3: interacts with the SM through a portal

 $\bar{p}\gamma^{\mu}(1-\gamma^5)n\,\overline{e}\gamma^{\mu}(1-\gamma^5)\nu$

Neutrino interactions and fundamental physics

Discovery of the dark sector

Dark sectors particles:

- 1: electrically neutral
- 2: feeble interactions and light
- 3: interacts with the SM through a portal

$$\bar{p}\gamma^{\mu}(1-\gamma^5)n \ \bar{e}\gamma^{\mu}(1-\gamma^5)v$$

The neutrino sector is the original dark sector!

Argument from Brian Batell

D. Pershey

CEvNS connections: neutrino oscillations

Neutrino-quark interactions are poorly constrained
 Flavor-dependent non-standard interactions can adjust
 interaction potential for neutrinos traveling through matter
 Oscillation ambiguity! Distinguish between LMA and
 LMA-dark oscillation scenarios

CEvNS connections: dark matter

Portal to hidden-sector dark matter

 $\mathcal{L} = \mathcal{L}_{\chi} - rac{1}{4} V_{\mu
u} V^{\mu
u} + rac{1}{2} m_V^2 V_{\mu} V^{\mu} - rac{\kappa}{2} V^{\mu
u} F_{\mu
u}$

- Galactic dark matter is slow: β < few parts per mil - Dark matter particles produced at accelerators are relativistic and make comparatively enormous recoils

boson

Coherence in CEvNS

Quantum mechanics – charge of the nucleus is sum of charges of individual nucleons within. Probability to scatter is proportional to the square of the sum

Coherence: $\sigma \propto Q_W^2$ $Q_W^2 = (g_p^V Z + g_n^V N)^2 = \left[(1 - 4\sin^2 \theta_W) Z - N) \right]^2$ $\frac{d\sigma}{dE_{\text{rec}}} = \frac{G_F^2}{4\pi} Q_W^2 \left(1 - \frac{E_{\text{rec}}}{E_{\text{rec},\text{max}}} \right) |F(Q^2)|^2$

D. Pershey

Elastic scattering: Kinematics

variation between materials

Initial recoil energy	10 keV	CEvNS interaction – neutrino kicks a nucleus giving it 10 keV of kinetic energy
Quenching	1 keV	Nucleus loses most of its energy to heat, only \sim 5-25% of initial kinetic energy makes scintillation
Light yield	100 γ	Nucleus loses \sim 10 eV for each γ produced – similar to H binding energy but large variation between materials
Collection efficiency	50 γ	Light must travel through active material bouncing off edges to reach photomultiplier tube (PMT) – some attenuation

10 keV	CEvNS interaction – neutrino kicks a nucleus giving it 10 keV of kinetic energy
1 keV	Nucleus loses most of its energy to heat, only \sim 5-25% of initial kinetic energy makes scintillation
100 γ	Nucleus loses \sim 10 eV for each γ produced – similar to H binding energy but large variation between materials
50 γ	Light must travel through active material bouncing off edges to reach photomultiplier tube (PMT) – some attenuation
10 γ	Light detectors have quantum efficiency for detecting photon. Depends on detector and scintillation wavelength
	10 keV 1 keV 100 γ 50 γ 10 γ

D. Pershey

Proton source

Accumulator ring

Mercu

targe[.]

Neutrino experiments

The Spallation Neutron Source (SNS)

Oak Ridge National Lab in Tennessee, USA 1.4 MW -> 2.1 MW (2027) of 1GeV protons at 60 Hz Delivers pulses of neutrinos 350 ns FWHM

2

LINAC

Liquid mercury as a target

Concern for MW particle beams: cooling! SNS uses a liquid mercury target Heavy nucleus in a liquid state -> can circulate and pass through a heat exchanger to cool

$$\sim 0.1 \,\pi^+$$
 / proton = 0.3 v / proton

Neutrinos from pion decay

Can we measure CEvNS at the SNS?

CEvNS was first seen by the COHERENT experiment at the SNS

How massive was the detector?

Can we measure CEvNS at the SNS?

CEvNS was first seen by the COHERENT experiment at the SNS

How massive was the detector?

Let's say we want to build a detector that will record 1 CEvNS interaction each day 20 m from the SNS target

```
\begin{split} N_{\text{proton}} &= 1.4 \text{ MW} / (1 \text{ GeV}) \times 86400 \text{ s} = 8e20 \\ N_{\text{pi}} &= N_{\text{proton}} \times 0.1 = 8e19 \\ N_{\nu} &= 3 \text{ N}_{\text{pi}} = 2e20 \rightarrow \\ \varphi_{\nu} &= 2e20 / [4\text{pi}(2000 \text{ cm})^2] = 5e-12 / \text{cm}^2 \\ N_{\text{CEVNS}} &= N_{\text{Cs/I}} \times \sigma_{\text{CEVNS}} \times \varphi_{\nu} \\ N_{\text{Cs/I}} &= N_{\text{CEVNS}} / (\sigma_{\text{CEVNS}} \times \varphi_{\nu}) = 1 / (1e-38 \text{ cm}^2 \times 5e-12/\text{cm}^2) \\ N_{\text{Cs/I}} &= 2e25 \text{ Cs/I atoms} = 5 \text{ kg} \end{split}
```


Neutrino Energy (MeV)

D. Pershey

Can we measure CEvNS at the SNS?

CEvNS was first seen by the COHERENT experiment at the SNS

How massive was the detector?

Let's say we want to build a detector that will record 1 CEvNS interaction each day 20 m from the SNS target

```
\begin{split} N_{\text{proton}} &= 1.4 \text{ MW} / (1 \text{ GeV}) \times 86400 \text{ s} = 8e20 \\ N_{\text{pi}} &= N_{\text{proton}} \times 0.1 = 8e19 \\ N_{\nu} &= 3 \text{ N}_{\text{pi}} = 2e20 \rightarrow \\ \varphi_{\nu} &= 2e20 / [4\text{pi}(2000 \text{ cm})^2] = 5e-12 / \text{cm}^2 \\ N_{\text{CEVNS}} &= N_{\text{Cs/I}} \times \sigma_{\text{CEVNS}} \times \varphi_{\nu} \\ N_{\text{Cs/I}} &= N_{\text{CEVNS}} / (\sigma_{\text{CEVNS}} \times \varphi_{\nu}) = 1 / (1e-38 \text{ cm}^2 \times 5e-12/\text{cm}^2) \\ N_{\text{Cs/I}} &= 2e25 \text{ Cs/I atoms} = 5 \text{ kg} \end{split}
```


Hand-held detector

boson

The COHERENT experiment at the SNS

A suite of neutrino detectors in a cramped hallway

Goal: measure as many low-energy neutrino cross sections as possible

CEvNS: Measured: CsI/Ar/Ge Ongoing: Na Inelastics: Measured: Pb/I Ongoing: Ar/D₂O/Th

D. Pershey

CsI[Na] scintillation response to nuclear recoils

Waveform analysis

The accelerator is bunched in time: 350 ns @ 60 Hz 1: search for interacting beam neutrinos (C ROI) 2: estimate backgrounds in-situ (AC ROI) 3: monitor background scintillation in real-time with pre-trace (PT) to each ROI

Beam arrives

Efficiency for tagging nuclear recoils

Data-driven estimation of CEvNS selection efficiency

Coincidence measurement of collimated beam of photons from ¹³³Ba decay

COHERENT CEVNS measurements

Argon scintillator

Germanium diode

Background-Subtracted On-Beam

12.5

15.0

17.5

Total

 $\bar{\nu}_{\mu}, \nu_{e}$

fit residuals

30

35

 ν_{μ}

20.0

10.0

energy (keVee)

Total

 $\bar{\nu}_{\mu}, \nu_{e}$

fit residuals

L) <u>COHERENT, arXiv:2406.13806 (2024)</u>

5

10

15

time (μs)

20

25

2.5

-5

0

5.0

7.5

<u>COHERENT, PRL 129 081801 (2022)</u>

D. Pershey

Physics with COHERENT

¹Miranda et al., *JHEP* **05** 130 (2021) ²Khan et al., *PRD* **104** 015019 (2021) ³Liao/Marfatia, *PLB* **775** 54-57 (2017) ⁴Cadeddu/Dordei, *PRD* **99** 092003(2019) ⁵Coloma et al., *PRD* **96** 115007 (2017) ⁶Denton/Gehrlein, *PRD* **106** 015022 (2022) ⁷Sierra et al., *PRD* 98 075018 (2018)
 ⁸Dutta et al., *PRL* 124 121802 (2019)
 ⁹Miranda et al., *PRD* 102 113014 (2020)
 ¹⁰Papoulias/Kosmas, *PRD* 97 033003 (2017)

D. Pershey

CEvNS at reactors – CONUS

- Ge ionization detectors operated at Brokdorf nuclear reactor
 Strictest constraint of CEvNS cross section at a reactor – 2 x SM
 CONUS+: upgraded electronics pushed threshold 210 -> 150 keV, collected reactor-off data
- reactor CEvNS hopefully soon

CEvNS at reactors – CONNIE

Angra reactor (Rio de Janeiro)

D. Pershey

MeV The inelastic regime Inelastic scattering on nuclei Inverse beta decay v-e elastic scattering

Inelastic scattering on nuclei – argon v_e CC example

- Bound scattering at MeV scale
 Like atomic electrons, protons
 and neutrons live in nuclear shells
- Neutrinos can bump up to an excited state

Visible energy:
$$E_v - (m_K + m_e - m_{Ar}) = E_v - 2.0 \text{ MeV}$$

D. Pershey

Measurement from COHERENT – iodine v_e CC example

COHERENT PRL 131 221801 (2023)

NalvE COHERENT detector

Array of 24 7.7-kg Nal[Tl] Crystals in Neutrino alley at the SNS

 v_e CC signal on ¹²⁷I separated from background using timing information

Distinguish between interactions that spit out a neutron using energy information

D. Pershey

Inverse beta decay (IBD)

Coincidence of two signals – background rejection!

 $\sigma \sim 1e-42 \text{ cm}^2 @ 5 \text{ MeV}$

Pros:

Background rejection Well-understood σ Visible energy: $E_v - 1.8$ MeV energy

Common interaction channel for reactor and supernova anti-neutrinos

Neutrino-electron scattering (ES)

e, p, ne, p, n

For $E_v >> m_e$, outgoing electron almost parallel with neutrino

 $\sigma \sim 5e-45 \text{ cm}^2 \otimes 5 \text{ MeV}(v_e)$ $\sigma \sim 2e-45 \text{ cm}^2 \otimes 5 \text{ MeV}(\overline{\nu}_{\rho})$ $\sigma \sim 0.6e-45 \text{ cm}^2 @ 5 \text{ MeV} (v_{\gamma})$

Pros:

Directional info Well-understood σ All detectors sensitive Cons:

Tiny cross section Poor energy estimates

GeV The complicated regime Quasi-elastic **Resonant production Deep inelastic scattering**

Neutrino interactions and oscillations

– Oscillation experiments occupy the most complicated regime
– An energy dependent
phenomenon: *need to precisely understand particles produced and their kinematics*

The MINERvA experiment

Quasi-elastic interactions

Two body scattering: only need to measure final-state variables to completely solve system Muon energy and scattering angle

$$E_{\nu} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Resonant π production

At slightly higher momentum transfer, the nucleon can be excited to a Δ_{1232} resonance Produces a distinctive, *nucleon+pion decay topology* with invariant mass 1232 MeV

Charged pion decay can release invisible energy through neutrinos – energy resolution!

Deep inelastic scattering

$$\nu_{\mu} + q \to \mu^- + X$$

Scattering localized on the scale of the nucleus – structure unimportant for predicting kinematics

Recipe for predicting kinematics: neutrino interaction

Recipe for predicting kinematics: nuclear motion

Back to nuclear shell model – the nucleus is a complex medium with each nucleon carrying momentum

This momentum will smear final-state particle kinematics

Recipe for predicting kinematics: nuclear motion

Quasi-elastic events can test this! If you track both muon and proton you can reconstruct the initial nucleon momentum Back to nuclear shell model – the nucleus is a complex medium with each nucleon carrying momentum

This momentum will smear final-state particle kinematics

Recipe for predicting kinematics: nuclear motion

Quasi-elastic events can test this! If you track both muon and proton you can reconstruct the initial nucleon momentum Back to nuclear shell model – the nucleus is a complex medium with each nucleon carrying momentum

This momentum will smear final-state particle kinematics

D. Pershey

Recipe for predicting kinematics: final state interactions

MINERvA PRD 96 072003 (2017)

D. Pershey

TeV The obliteration regime Deep inelastic scattering

Deep inelastic scattering

Above 30 MeV, cross section
dominated by the DIS channel
Simplifies experimental
concerns

Scattering of quarks. Nuclear
 environment not important

– Easier to model

Measuring over all scales

The FASERv project: closing the accelerator-cosmic gap

D. Pershey

- Study neutrino interactions from keV to TeV scale
- Fundamental scattering properties poorly known and precision measurements at low energies could be next clear indication of new physics
- Many uncertainties on scattering in the MeV-GeV regimes that must be resolved for astrophysics (tomorrow) and oscillations (Thursday)