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Sources of astrophysical neutrinos
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Solar and atmospheric neutrinos 
incredibly influential to particle physics 
    Discovery of neutrino oscillations and
    mass

New field of neutrino astronomy
    Supernova and > TeV-scale neutrinos 
    complement light and GW probes to
    understand the physical processes
    responsible for these phenomena

Solar and atmospheric neutrinos 
discovered oscillations – will cover 
tomorrow
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The cosmic neutrino background
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Detecting a non-relativistic neutrino
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3H → 3He + 𝑒− + തν𝑒

CνB

CMB

Big-bang neutrinos, initially in equilibrium,
decoupled much sooner than CMB, 1 s 
after – cosmic neutrino background CνB
– Temp = 1.945 K from cosmology
– KE = 3/2(kT) = 0.5 meV << neutrino mass!
– density ≈ 56 / cm3

ν𝑒 + 3H → 3He + 𝑒−

Weinberg proposed detection by tritium absorption

KEe,max = mH – mHe – me – mν 

KEe,max = mH – mHe – me + mν + Tν

Electron endpoint 2mν + Tν ≈ 2mν for
absorbed CνB neutrinos than for decays
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Diagram of the PTOLEMY method
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Goal to achieve 50 meV final resolution for electrons.  Currently prototyping both the 
EM filter spectrometer and the microcalorimeter detector

ΔV = 18591 eV
Tritium Q-value is 18592 eV

Electron losses KE in electric field

Step 1: EM filter Step 2: Microcalorimeter

KE ≈ 1 eV

Chris Tully L’Aquila Seminar

Step 0: Ultra-cold source

https://www.intechopen.com/chapters/82927
https://link.springer.com/article/10.1007/s10909-019-02271-x
https://indico.gssi.it/event/521/attachments/863/1488/PTOLEMYLAquila_reduced.pdf
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Potential Ptolemy spectrum (optimistic)
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Ptolemy, JCAP 07 047 (2019)

2mν

Δ: energy 
resolution

If resolution better than the
neutrino mass is achieved, 
measurement is possible

Currently prototyping, 
efficacy of approach will be
clearer by 2030

https://iopscience.iop.org/article/10.1088/1475-7516/2019/07/047
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Supernova neutrinos
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Core-collapse mechanism
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Though neutrinos interact very feebly, they drive some of the largest
explosions in the universe – the core-collapse supernova of the most
massive stars
During collapse, matter becomes incredibly hot but is trapped in a dense
medium – will cool by releasing huge amount of the least-interacting 
particle produced in the explosion, our neutrinos
      ~ 1057 ν with <E> = 10 MeV in 10 s
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Phases of a supernova explosion
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1.  Neutronization through 𝑝 + 𝑒 → 𝑛 + 𝜈𝑒  in the core gives a short-
   lived, intense flash of 𝜈𝑒

2.  Explosion!  Shock wave forms, neutrino production dominated by matter accreting
3.  Shock wave expands outward. Neutrino emission cools the proto-neutron star
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Rapid cooling of proto-neutron star – Urca processes
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A supernova has no choice but to cool itself through neutrino emission
Cooling happens on timescales smaller than shock propagation

𝑛 → 𝑝 + 𝑒− + തν𝑒

 𝑝 + 𝑒− → 𝑛 + ν𝑒

Can lead to neutrino emissions: temp << 10 MeV, timescales >> 10 s
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Rapid cooling of proto-neutron star – Urca processes
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“because the Urca Process results in a rapid disappearance of thermal energy 
from the interior of a star, similar to the rapid disappearance of money from 
the pockets of the gamblers on the Casino de Urca” – George Gamow

A supernova has no choice but to cool itself through neutrino emission
Cooling happens on timescales smaller than shock propagation

𝑛 → 𝑝 + 𝑒− + തν𝑒

 𝑝 + 𝑒− → 𝑛 + ν𝑒

Can lead to neutrino emissions: temp << 10 MeV, timescales >> 10 s
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Observation of Supernova 1987a
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Neutrinos from SN1987a
seen in three experiments

Water Cherenkov:
Kamiokande-II (Japan) 11-12 evts
Irvine-Michigan-Brookhaven (USA) 6 evts
Scintillator:
Baksan (Russia) 5 evts

Countless papers based on 22 events!
Nuclear physics, astro of collapse, DM, 
axions, ν magnetic moment, 
ν-ν interactions, sterile ν, more
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Dominant interaction channels
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Water/Scintillator

Chemically, these are
H2O, CH2 – lots of free protons!
Inverse Beta Decay, IBD, (തν CC)

Positron + neutron capture
gives time-correlated 
activity for background
rejection
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Dominant interaction channels
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Water/Scintillator LArTPC’s

Chemically, these are
H2O, CH2 – lots of free protons!
Inverse Beta Decay, IBD, (തν CC)

Scattering material is argon,
large ν CC cross section

Distinctive event topology,
leverage precision tracking

Positron + neutron capture
gives time-correlated 
activity for background
rejection
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Dominant interaction channels
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Water/Scintillator LArTPC’s

Chemically, these are
H2O, CH2 – lots of free protons!
Inverse Beta Decay, IBD, (തν CC)

Dark matter detectors

Scattering material is argon,
large ν CC cross section

Low threshold makes these
sensitive to CEvNS, largest
cross section in 10s of MeV

Distinctive event topology,
leverage precision tracking

Positron + neutron capture
gives time-correlated 
activity for background
rejection

Sensitive to all the flavors!
No uncertainties on 
oscillations, gives direct 
estimate of flux
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Dominant interaction channels

16

Water/Scintillator LArTPC’s

Chemically, these are
H2O, CH2 – lots of free protons!
Inverse Beta Decay, IBD, (തν CC)

Dark matter detectors

Scattering material is argon,
large ν CC cross section

Low threshold makes these
sensitive to CEvNS, largest
cross section in 10s of MeV

Distinctive event topology,
leverage precision tracking

Positron + neutron capture
gives time-correlated 
activity for background
rejection

Sensitive to all the flavors!
No uncertainties on 
oscillations, gives direct 
estimate of flux

𝜈𝑒ҧ𝜈𝑒
𝜈μ + ҧ𝜈μ + 
𝜈τ + ҧ𝜈τ

Fundamental differences in detectors.
Each technology complements others!
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𝜈𝑒 ҧ𝜈𝑒 𝜈𝑥

LArTPC1 89% 4% 7%

Dark Matter 0% 0% 100%

Water2 10% 87% 3%

Scintillator3 1% 72% 27%

An experimentalist’s goal for a supernova
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𝜈𝑒

ҧ𝜈𝑒
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Rare event with rich physics – design a 
diverse, global experimental program 
that provides detailed kinematic 
information from all channels

2Super-Kamiokande, Astropart. Phys. 81 39-48 (2016)
3Lu, Li, and Zhou, Phys Rev. D 94 023006 (2016)

1DUNE, Eur. Phys. J. C 81 423 (2021)
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Upcoming supernova detectors
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Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple
Old friends and the new kid on the block
SK: 22.5 kt running with gadolinium doping
HK: new 260 kt detector to be commissioned in 2027
50000 evts per typical collapse for HK
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Upcoming supernova detectors
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20 kt of organic liquid scintillator in acrylic ballon
78% photodetector coverage!  17612 20” and 25600 3” PMT’s
35 kt outer Cherenkov detector for veto
Construction progressing rapidly
1000s of events for typical collapse

Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple
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Upcoming supernova detectors
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4 x 17 kt LArTPC modules with first expected by ≈ 2028
Sanford Underground Research Facility (SURF)
3300 meters-water-equivalent of overburden
1000s of events for typical collapse

Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple
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Upcoming supernova detectors

21

Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple
Each of 4 modules unique – technology set for first two
First module is the “vertical drift”
   Charge readout on top and bottom planes of detector
   Photodetectors on central plane and along detector walls

1
3

.5
 m
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Upcoming supernova detectors

22

Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple ARAPUCA: dichroic filter waveguides with SiPM readout
Long bars trap light and focus into specific light detectors
First tests at Brazilian Synchrotron Light Laboratory in 2016

ARAPUCA collaboration, arXiv:2405.12014 (2024)

https://arxiv.org/html/2405.12014v1
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Upcoming supernova detectors
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Large, ton-scale dark matter experiments will see CEvNS from SN
Liquid noble detectors most sensitive: 
LZ, XENONnT, PandaX-4T, DarkSide-20k
100s of events for typical collapse

Water: SK/HK

Scintillator: JUNO

Argon: DUNE

DM: multiple
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Supernova pointing
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Visible electron

Water Cherenkov (SK + HK) and argon
tracking (DUNE) detectors can estimate
the source of the supernova collapse
in the sky

Dominant IBD channel is ≈ isotropic
Small fraction are ES – which point away
from supernova collapse

Resolution of 1-5 deg depending on distance
Example: SuperKamiokande
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Pre-supernova neutrinos in JUNO
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Farag et al., APHYS J, 893, 133 (2020)

HR diagram 
for neutrinos

~ 1 day before collapse, stars begin fusing Si to Fe, releasing 
few MeV neutrinos that can be detected to kpc distance

https://iopscience.iop.org/article/10.3847/1538-4357/ab7f2c/meta
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Pre-supernova neutrinos in JUNO
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Farag et al., APHYS J, 893, 133 (2020)

HR diagram 
for neutrinos

~ 1 day before collapse, stars begin fusing Si to Fe, releasing 
few MeV neutrinos that can be detected to kpc distance

Scintillators have high light yield + low threshold + low 
backgrounds.  JUNO excellent for this physics
Can detect neutrinos before collapse up to 1.6 kpc away
Early-warning to the early warning experiments

Threshold:
≈ 0.2 MeV

JUNO, JCAP 01 057 (2024)

https://iopscience.iop.org/article/10.3847/1538-4357/ab7f2c/meta
https://iopscience.iop.org/article/10.1088/1475-7516/2024/01/057
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Simplest question – measuring rate with DM experiments

27

Lang, McCabe, Recihard, Selvi, Tamborra,
PRD 94 103009 (2016) DarkSide-20k JCAP 03 043 (2021)

No uncertainty from neutrino oscillations, understood detector response and signal
Very low-energy!  Opens to new physics searches
Each detector would only see 100s of events – pooling between multiple experimeints

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.103009
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.103009
https://iopscience.iop.org/article/10.1088/1475-7516/2021/03/043
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Probing the neutronization burst with DUNE
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Argon detectors have strong
sensitivity to the ν𝑒  flux – gives
unique sensitivity to characteristics
of the neutronization burst 

DUNE, Eur. Phys. J. C 81 423 (2021)

Neutronization burst often considered a “standard candle” – easy time window to study 
nuclear physics of proto neutron star, new neutrino properties, and the core-collapse 
mechanism

https://link.springer.com/article/10.1140/epjc/s10052-021-09166-w


Neutrino astrophysicsD. Pershey

Searching for SASI oscillations in HK
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J. Migenda, HK, Neutrino 2016

Mean energy Rate

Standing accretion shock instability (SASI) – as shock wave stalls, a modulating pattern in 
emission rate and energy is expected 
Amplitude and frequency gives direct information about matter properties in collapse
At 260 kt, HK’s massive size makes it ideal for studying SASI

https://iopscience.iop.org/article/10.1088/1742-6596/888/1/012255
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A global picture
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Sign up for the email list or be left behind: https://snews.bnl.gov/mailinglists.html

https://snews.bnl.gov/mailinglists.html
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Extra-galactic supernova neutrinos
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Neutrino flux per ∝ 1/𝑟2

Rate of supernova ∝ 𝑟2

   Two effects cancel out and the 
   total flux of supernova events 
   sums  to a finite contribution
Guaranteed signal! 

Diffuse supernova neutrino 
background (DSNB)

SK PRD 104 122002 (2021)

Low flux, < 2.7 തν / cm2 / s
SK PRD 104 122002 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.122002
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DSNB measurements in SK
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Water detector – IBD search

In water, neutron captures 
on 1H giving 2.2-MeV 
gamma -> below SK 
threshold (3.5 MeV)
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DSNB measurements in SK
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In water, neutron captures 
on 1H giving 2.2-MeV 
gamma -> below SK 
threshold (3.5 MeV)

Water detector – IBD search Gives giant bkg
from muon decay

Zhou and Beacom, arXiv:2311.05675 (2023)

https://arxiv.org/pdf/2311.05675
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SK-Gd upgrade – for DSNB measurements
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SK doped 0.03% Gd ->
captures now visible
releasing 7.9 MeV!
Removes 

Water detector – IBD search
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SK-Gd offers a hint of DSNB
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956 days of SK-Gd gives similar sensitivity to 5823 days of SK
2.3 σ excess: preliminary data looks like a flux of 1-2 തν / cm2 / s

Masayuki Harada, Neutrino 2024

https://agenda.infn.it/event/37867/contributions/233922/attachments/122065/178295/20240620_v9.pdf


Neutrino astrophysicsD. Pershey

Ultra-high energy neutrinos
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Cherenkov neutrino telescopes at the km3 scale
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OceanGlacier

Advantage: less optical scattering =
better angular resolution

Advantage: less optical absorption =
better light collection

KM3NeT/ARCA
28/230 deployed

Baikal
110 strings deployed

Tracks Showers

IceCube – results since 2013
Upgrade to gen2 in mix
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Is Earth transparent to neutrinos?
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Scattering length: 𝐿 = 1/𝑛σ

Earth’s diameter = 12700 km

Earth is transparent for σ > 1/𝑛𝐿 
σ > 1/[(6 g/cm3 x 6e23/g) x (1e9 cm)]
σ > 3e-34 cm2
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Is Earth transparent to neutrinos?
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Scattering length: 𝐿 = 1/𝑛σ

Earth’s diameter = 13000 km

Earth is transparent for σ > 1/𝑛𝐿 
σ > 1/[(6 g/cm3 x 6e23/g) x (1.3e9 cm)]
σ > 3e-34 cm2

Above 2e5 GeV
worry about
absorption in
Earth

IceCube, PRD 104, 022001 (2021)

Only sensitive to sky just under 
horizontal at high energy

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.022001
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Solution: multiple telescopes across the globe

40
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Complimentary sky sensitivity
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Arguelles, Hlazen, Kurahashi, arXiv:2405.17623

https://arxiv.org/html/2405.17623v1
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Reaching beyond the solar system
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With light, cosmic rays, and gravitational
waves, neutrinos are an important 
component of modern astronomy

Step 1:
Above several TeV, astrophysical and 
cosmogenic neutrinos dominate over
atmospherics.  First goal is to observe 
these neutrinos

Step 2:
Classify the identified sources
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Measuring astrophysical neutrinos: the PeV frontier
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IceCube PRL 125 121104 (2020)

IceCube 2020

J. Coelho, Neutrino 2024
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121104
https://agenda.infn.it/event/37867/contributions/233917/attachments/121916/178248/JCoelho_202406_Neutrino_KM3NeT.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.042005
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Neutrinos from the Milky Way
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Resolving individual sources
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Do these neutrinos correlate
to a specific source?

Some local densities that
cluster around supernova
remnants – more data needed!

Combination of IceCube gen2
and Baikal, KM3NeT, and
p-ONE could make clear
statement
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Reaching beyond the galaxy
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4.0 σ identification of multi-TeV neutrinos
from galaxy NGC 1068

AGN with supermassive black hole emitting
radiation, including neutrinos
Searching other Seyfert galaxies for similar
neutrino spectra with 2-3 σ evidence
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Cosmogenic neutrinos
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1020 eV protons resonantly scatter off 
CMB photon making a Δ1232 whose 
decay produces PeV-EeV neutrinos:
The GZK resonance neutrinos

Very rare, very large interactions.  Need
more fiducial mass
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Radio detection of neutrinos
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Askaryan radiation:

Electromagnetic showers drive a current of 
electrons and positrons – but more electrons 
produced due to Compton scattering

Pair production Compton

e+ and e- current

e- current
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Radio detection of neutrinos
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Askaryan radiation:

Electromagnetic showers drive a current of 
electrons and positrons – but more electrons 
produced due to Compton scattering

Pair production Compton

e+ and e- current

e- current

For constructive interference:
Need wavelength > shower size

Radio emission!!!
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ANITA – a balloon-based experiment
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First attempts used
balloons scanning areas
of 104 km2

Upcoming PUEO experiment
may probe expected GZK

ANITA, PRL 96 171101 (2006)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.171101
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IceCube gen2 radio upgrade
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1 km28 km2500 km2

Good news – attenuation length much longer for radio in ice.  IceCube gen2 plans to deploy
a sparse network of radio antennae with excellent coverage of GZK neutrino parameter space
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Summary

52

– Neutrinos’ feeble interaction strength make them an important aspect of 
modern astronomy giving information about the most dense and exotic objects 
in the universe

– Neutrinos were first fermions to decouple in the universe – big bang evidence

– Core-collapse supernova are rare, but their neutrino bursts give an incredible 
amount of information about particle physics and astrophysics

– Dedicated km3 or larger telescopes becoming critical to astronomy

– Most experiments also involved in neutrino oscillations – stay tuned for 
tomorrow!
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