

Neutrino Oscillations and Ονββ Dan Pershey (Florida State University) – Jul 19, 2024

Second school on neutrino and dark matter detection South American Institute for Fundamental Research

Spoiler alert: they're all in the neutrino sector

Spoiler alert: they're all in the neutrino sector

- 1: which is the heaviest neutrino mass eigenstate?
- 2: what is the θ_{23} octant?
- 3: is there CP violation in neutrinos?
- 4: what is the absolute neutrino mass scale?

Gehrlein, Petcov, Spinrath, Titov, arXiv:2203.06219 (2024)

Spoiler alert: they're all in the neutrino sector

- 1: which is the heaviest neutrino mass eigenstate?
- 2: what is the θ_{23} octant?
- 3: is there CP violation in neutrinos?
- 4: what is the absolute neutrino mass scale?

Spoiler alert: they're all in the neutrino sector

- 1: which is the heaviest neutrino mass eigenstate?
- 2: what is the θ_{23} octant?
- 3: is there CP violation in neutrinos?
- 4: what is the absolute neutrino mass scale?

Spoiler alert: they're all in the neutrino sector

1: which is the heaviest neutrino mass eigenstate?

2: what is the θ_{23} octant?

3: is there CP violation in neutrinos?

4: what is the absolute neutrino mass scale?

Long-baseline oscillation experiments

0vββ, tritium spectrometers, cosmology

Long-baseline accelerator experiments π^{-1} decay region

Accelerator produces beam of GeV-scale neutrinos Can focus either π^+ or π^- giving ν_{μ} or $\overline{\nu}_{\mu}$ neutrino flux Near detector – constrain uncertainties on flux, cross section, etc. Far detector – measure oscillated spectrum

v_e appearance probability

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= \sin^{2} \theta_{23} \, \sin^{2} 2\theta_{13} \, \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \, \Delta_{31}^{2} \\ &+ \sin 2\theta_{23} \, \sin 2\theta_{13} \sin 2\theta_{12} \, \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \, \Delta_{31} \, \frac{\sin(aL)}{(aL)} \, \Delta_{21} \, \cos\left(\Delta_{31} + \delta\right) \\ &+ \, \cos^{2} \theta_{23} \, \sin^{2} 2\theta_{12} \, \frac{\sin^{2}(aL)}{(aL)^{2}} \, \Delta_{21}^{2}, \end{split}$$

Neutrino mass ordering

 $\nu_{\mu} \rightarrow \nu_{e}$

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} + \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta) + \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$

D. Pershey

CP violation

 θ_{23} octant

$$\begin{split} \mathcal{V}_{\mu} &\longrightarrow \mathcal{V}_{e} \\ P(\nu_{\mu} \rightarrow \nu_{e}) &= \underbrace{\sin^{2}\theta_{23}} \sin^{2}2\theta_{13} \ \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \ \Delta_{31}^{2} \\ &+ \sin 2\theta_{23} \ \sin 2\theta_{13} \sin 2\theta_{12} \ \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \ \Delta_{31} \ \frac{\sin(aL)}{(aL)} \ \Delta_{21} \ \cos(\Delta_{31} + \delta) \\ &+ \ \cos^{2}\theta_{23} \ \sin^{2}2\theta_{12} \ \frac{\sin^{2}(aL)}{(aL)^{2}} \ \Delta_{21}^{2}, \end{split}$$

Maximal v_{μ} - v_{τ} mixing

$$\nu_{\mu} \rightarrow \nu_{\mu}$$
$$P_{\mu\mu} = 1 - \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}$$

- Is there "maximal mixing" between v_{μ} and v_{τ} ?
- Would expect complete
- disappearance of v_{μ} beam at the oscillation maximum
- Need to worry about smearing and backgrounds!

The NOvA experiment

Long baseline neutrino oscillation experiment in NuMI neutrino beam at Fermilab High-purity and configurable $v_{\mu}/\overline{v}_{\mu}$ beam

Peak energy = 1.8 GeV // baseline = 810 km

Functionally identical near and far detectors for optimal cancelation of systematic uncertainties

- Liquid scintillator detector
- Low-Z: good imaging of electromagnetic showers necessary for v_{μ}/v_{e} channel tagging – FD(ND) is 14(0.3) kt

Long-baseline oscillation measurements

Make a neutrino beam: the target

~ 1 MW primary proton beam incident on target of 48 2-cm long and 1.5-cm wide cylindrical graphite fins

Fins held in vacuum and cooled with water

344 C maximum temp in each of the fins after beam spill

Beam spill rate of 0.53 Hz

Produces secondary meson beam

Make a neutrino beam: the horns

Horn = giant electromagnet that acts like a lens

Pulse current up to 207 kA through the horn for 2.3 ms each beam spill

Produces magnetic field which deflects charged particles. Series of two horns together *focuses mesons of one charge sign while deflecting those of opposite sign*

Neutrino oscillations and $0\nu\beta\beta$

Make a neutrino beam: the decay pipe

Mesons produced in target need opportunity to decay

Steel cylander evacuated to 0.0006 atm of pressure allowing mesons to decay in vacuum

How long should the pipe be? Beam peaks at 2 GeV -> comes from pions of about 4 GeV $L = \gamma \tau c = (E/m) \tau c$ = (4 GeV / 140 MeV)(26 ns)c = 220 m

Finally, terciary neutrino beam!

Make a neutrino beam: the absorber

At end of decay: sequence of concrete slabs and undisturbed rock to absorb all charged particles produced in the target

D. Pershey

Make a neutrino beam: off-axis angle

Off-axis, kinematics of meson decays limits the maximum energy of neutrinos produced -> induces a narrow-band beam.

NOvA placed 14.6 mrad off-axis with peak beam energy of 1.8 MeV

NOvA detectors

Neutrino interactions in NOvA

D. Pershey

Neutrino interactions in NOvA

Event identification with convolutional neural networks

Event identification with convolutional neural networks

 $\frac{1}{8}$

Event identification with convolutional neural networks

Near detector data

Apply CNN classifier to data to select events believed to be v_{μ} or v_e CC Degree of mismatch with simulation must be propagated to the far detectors

Neutrino oscillations and 0vββ

Step 2: Measure

(_te

detector

in near detector

 π^{-}

target

focusing

Constraining the far detector prediction – extrapolation

Apply simulated acceptance differences and oscillation probabilities channel-by-channel

Result: a data-driven constraint of the far detector signal prediction!

ν_{μ} disappearance data

Step 4: far detector

D. Pershey

 v_e appearance data

Step 4: far detector

The T2K experiment

0.6 GeV beam from J-PARC 295-km baseline Composite near detector with tracking capabilities Far detector = SK

> MR (Main Ring

(3-GeV Rapid Cycling

Synchrotron)

Beam Abor

400-MeV LINAC Hadron Experimental Hall

laterials and Life Science Experimental Facility)

Neutrino Facility

D. Pershey

Neutrino oscillations and $0\nu\beta\beta$

Summary of appearance data

Joint NOvA/T2K data: CP violation and mass ordering

Slight overall preference for the inverted mass ordering

If mass ordering is inverted: $\delta_{CP} = 3\pi/2 - \text{to give more}$ appearance in neutrino mode

Marginalizing over mass ordering and θ_{23} , we can say $\delta_{CP} = \pi/2$ is ruled out at > 3σ

Joint NOvA/T2K data: θ_{23} octant

Slight preference for upper octant: $\theta_{23} > \pi/4$

Indication v_e/\overline{v}_e appearance both more likely than expected in maximal mixing scenario

Sensitivity of the future DUNE experiment

D. Pershey

Events per 0.25 GeV

Direct mass measurements

Double beta decay

Finding candidate nuclei

Consider nuclei whose 1β decay is kinematically forbidden!

General trends in binding energy for nuclei as a function of proton number for a given atomic mass

Due to unpaired nucleons, odd-odd
nuclei have higher binding energy
than typical

 Look for most stable even-even for a given atomic mass

⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd ²³⁸U

Double-beta	Q-value	Phase space	Isotopic abundance	Enrichable by	Indicative cost
candidate	(MeV)	$G_{01}(y^{-1})$	(%)	centrifugation	normalized to Ge
⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	No	_
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes	1
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes	1
⁹⁶ Zr	3.35037 (289)	5.02×10^{-14}	2.8	No	_
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes	1
¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes	3
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes	0.2
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes	0.1
¹⁵⁰ Nd	3.37138 (20)	1.54×10^{-13}	5.6	No	—

Double-beta	Q-value	Phase space	Isotopic abundance	Enrichable by	Indicative cost
candidate	(MeV)	$G_{01}(y^{-1})$	(%)	centrifugation	normalized to Ge
⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	Ne	
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes	1
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes	1
⁹⁶ Z:	3.35037 (289)	5.02×10^{-14}	2.8	No	
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes	1
¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes	3
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes	0.2
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes	0.1
150Nd	3.37138 (20)	1.54×10^{-13}	5.6	No	

Double-beta candidate	Q-value (MeV)	Phase space $G_{01}(y^{-1})$	Isotopic abundance (%)	Enrichable by centrifugation	Indicative cost normalized to Ge	
 ⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	Ne		
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes	1	Semiconductor
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes	1	Bolometer
⁹⁶ Z:	3.35037 (289)	5.02×10^{-14}	2.8	No		_
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes	1	Bolometer
¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes	3	CdWO₄ scintillator
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes	0.2	Bolometer
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes	0.1	Scintillator
 150Nd	3.37138 (20)	1.54×10^{-13}	5.6	No		_

	Double-beta candidate	Q-value (MeV)	Phase space $G_{01}(y^{-1})$	Isotopic abundance (%)	Enrichable by centrifugation	Indicative cost normalized to Ge	
_	⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	No		_
	⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes	1	Semiconductor
	⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes	1	Bolometer
_	⁹⁶ Z:	3.35037 (289)	5.02×10^{-14}	2.8	No		_
	¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes	1	Bolometer
	¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes	3	CdWO₄ scintillator
	¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes	0.2	Bolometer
	¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes	0.1	Scintillator
_	150 Nd	3.37138 (20)	1.54×10^{-13}	5.6	No		_
		()					

Focus on one example of each technology

Semiconductor ⁷⁶Ge – LEGEND-200 Bolometer ¹³⁰Te – CUORE

Scintillator ¹³⁶Xe – KamLAND-Xen

Translating to neutrino mass: nuclear theory

Ge: the LEGEND-200 experiment

200 Ge semiconductor ionizing detectors Inner liquid argon scintillating veto Outer water Cherenkov veto Mass: 200 kg Enrichment: up to 92% Energy resolution: ~ 0.1% Background: 5.3e-4 /keV/kg/yr

Controlling backgrounds with multi-site rejection

Ar

- 1: Pulse shape discrimination
- 2: Argon anti-coincidence

D. Pershey

Te: the CUORE experiment

988 TeO₂ bolometers in 10 mK cryostat No active veto – but passive shielding

Mass: 742 kg Natural abundance: 34% Energy resolution: ~ 0.1% Background: 1.4e-2 /keV/kg/yr

rejection is difficult Veto for coincidence activity in multiple detectors

Te: the CUORE experiment

Xe: the KamLAND-Zen experiment

745 kg Xe-loaded liquid scintillator in nylon balloon Radiopure liquid scintillator veto in detector Outer water Cherenkov veto Mass: 745 kg Enrichment: 91% Energy resolution: ~ 4-5% Background: 1.1e-4 /keV/kg/yr

Itaru Shimizu, Neutrino 2024

Dominant background: Xe spallation – a long-lived nuclei activated by cosmics

Position + time coincidence

Double beta decay results

- Tag long-lived spallation background:
- Time correlated to multi-neutron interaction using N_{neutron}, dR, dT info
- Tags 47% of background giving sideband to estimate background in region of interest

57 events on 32 background in 1.13 t-yrs T_{1/2} > 3.8e26 yrs Translates to $\langle m_{\beta\beta} \rangle$ less than 28-122 meV

Current run completed, upgrading light collection to improve energy resolution

Experimental outlook

Summary

– Plenty of fundamental physics questions remain for neutrino physics!

– Many unknowns in oscillation frameworks which are currently known at the $\sim 1\sigma$ level from NOvA/T2K experiments

 Current data demonstrates validity of accelerator approach which will be advanced by future experiments such as DUNE

– Beyond oscillations, $0\nu\beta\beta$ experiments can determine direct mass scale which would resolve last SM question