
Exercises

1. We will start by looking into the seesaw mechanism. In a single-generation scenario,

the neutrino mass matrix would look like
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mD µ

! 
⌫

⌫c

!
+ h.c. (0.1)

(a) Find the eigenvalues of this matrix. Expand them in mD/µ ⌧ 1.

After diagonalization, we get m2,1 = 1
2

⇣
µ±

q
µ2 +m2

D

⌘
. Expanding that, we

get m1 ' �m2
D/µ and m2 = µ. The latter corresponds to the mass of the heavy

neutrino ⌫h and the former to the mass of the light neutrino ⌫`.

(b) What is the rotation angle that diagonalizes this symmetric matrix? Call the

physical basis ⌫` and ⌫h, where ⌫h is the heavy neutrino, sometimes called a

heavy neutral lepton (HNL). Which will interact more strongly with the rest of

the SM particles?

You can always diagonalize a 2⇥ 2 symmetric matrix

M =

 
a c

c b

!
as diag(m1,m2) = R(✓)T .M.R(✓) with

where tan 2✓ = 2c
b�a and R(✓) the rotation matrix. In this case, the mixing angle

in this scenario is tan 2✓ = mD/µ, which, to leading order, implies ✓ ⇠ mD/µ.

Multiplying things out, you should see that the light mass state is the one that

most closely resembles ⌫ (the interacting neutrino state), and therefore, is the

one that interacts more with SM particles (through the Weak force).

(c) Identify ⌫` state with the neutrinos we observe in the laboratory and take m⌫` ⇠

0.05 eV. Recalling that mD comes from the Higgs mechanism, mD = yv/
p
2

with v = 246 GeV and y a coupling constant, we will take mD to be in the rage

[me,mt] = [511 keV, 176 GeV], corresponding to y ⇠ [3⇥10�6, 1]. What are the

values of µ that you need in order to obtain the assumed value for m⌫`? What

values of the mixing angle do these correspond to?

Putting in the numbers, we get roughly, µ ⇠ [103 GeV, 1014GeV] and ✓ ⇠

[10�7, 10�12]. You can see that even if the Dirac mass term is as small as

the electron one, the required Majorana mass (and therefore the mass of the

propagating state ⌫h) will be very large and will be quickly untestable as you

raise mD. All relevant cross sections and decay rates for detecting ⌫h, in fact,

scale as ✓2, so that makes these particles very hard to observe in the laboratory,

even if we had the energy to produce them. We say then, that ⌫h has weaker-

than-Weak interactions, meaning that the only part of ⌫h that does interact (a

fraction ✓ of its superposition) interacts only through the Weak force.

2. This exercise will explore low-scale variants of the seesaw mechanism. The idea will

be to turn the seesaw on its head and explore symmetries to make neutrino masses

small.
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Low-scale seesaws (sometimes referred to as double, extended, linear, or inverse see-

saws) introduce a pair of neutral lepton per neutrino family (call them ⌫c and n, for

example). In a single-generation scenario, the neutrino mass matrix becomes

L � �
1

2

⇣
⌫ ⌫c n

⌘
0

B@
0 mD "

mD µ0 M

" M µ

1

CA

0

B@
⌫

⌫c

n

1

CA+ h.c. (0.2)

(a) The quantum numbers of the neutral leptons are L(⌫) = 1, L(⌫c) = �1, and

L(n) = 1. Out of all the parameters in the matrix above, which ones violate

lepton number?

By adding the quantum numbers of each mass term, we can deduce that µ, µ0,

and ✏ violate Lepton number.

(b) Calculate the determinant of this matrix. What happens when all the lepton-

number-violating (LNV) parameters go to zero? What does this imply for light

neutrino masses?

det(M) = 2✏MmD � ✏2µ0
� µm2

D. When all the LNV parameters go to zero,

this determinant vanishes! This means that at least one of the eigenvalues is

zero (recall that det(M) = ⇧i�i and Tr(M) = ⌃i�i). So, when lepton number

is conserved, the model is no good for generating light neutrino masses. Note

that in the standard seesaw (exercise 1), the LNV parameter (µ) is huge, so

everything here is consistent.

(c) Keeping all these lepton-number-violating parameters zero and assuming the

Dirac massmD is much smaller than all other parameters, diagonalize the matrix

above and analyze what happens with the pair ⌫c and n. What kind of particle

are they?

By diagonalizing this matrix, we get m1 = 0, m2,3 = ⌥

q
M2 +m2

D. Note that

this is a Dirac fermion! There are two degenerate (chiral/Weyl/2-component)

fermions, which will make up one single Dirac particle, just like in the case of

the electron or muons, etc. When mD is small, this is easy to understand, the

mass matrix looks very close to what we had for the electron case, (eec), except

that there is an additional, unpaired fermion, namely the light neutrino.

(d) Turn on each LNV parameter at a time and diagonalize the matrix assuming

mD ⌧ LNV parameters ⌧ anything else. Mathematica, Wolfram Alpha, or

Python are your friends here. You can assume all parameters are real and

positive. What happens to the heavy neutral lepton masses? What kind of

particle are they?

I won’t bother with the full matrix, but the important part is the expression for

the lightest mass,

m⌫ =
µm2

D + "µ0
� 2M"mD

M2 � µ0µ
. (0.3)

Again, when all LNV parameters go to zero, this goes to zero. This gives us an

additional way to make neutrino masses small! We can say that lepton number is
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*almost* conserved and that gives us an extra “knob” to control neutrino masses.

The two other masses are roughly m2,3 ⇠ ⌥M+O(LNV parameters/M) — this

means that the mass eigenstates 2 and 3 combine into a Quasi-Dirac fermion.

The two (Weyl) fermions have almost the same mass, but are split by the scale

of LNV parameters. So, in the limit of lepton number (quasi-)preservation, the

heavy neutrinos become more and more Dirac like.

(e) Estimate the mixing between the weak-interaction eigenstate ⌫ and the heavy

neutral leptons. What is the relationship between light neutrino masses and the

mixing?

You can show that the (small) mixing angles are still given by things of the

order of mD/M . This is great because the small LNV parameters that can

reduce the size of neutrino masses do not reduce the size of the mixing. The

great advantage of low-scale seesaws is that the neutrino mass mechanism is

a lot more testable. They are also “natural” in the technical sense: neutrino

masses are small because there is a symmetry that is enhanced when they go

to zero. This is the opposite of what happens in the usual seesaw: there the

neutrino masses are small because the LNV scale is huge.

3. This exercise will show you how to estimate the signal event rate for heavy neutrinos

produced by pion decay-at-rest sources and decaying inside a large-volume experi-

ment. Consider a spallation source with O(GeV) protons hitting a dense target. The

number of pions produced at this source is related to the number of protons on target

by N⇡ ⇠ 10%⇥NPOT.

(a) In terms of the mixing angle of the heavy neutrino with the muon neutrinos,

|Uµ4|
2 1, what is the flux of HNLs at a distance L from the target?

HNLs will be produced by pion decay. Since pions decay predominantly as

⇡+
! µ+⌫µ, we can just swap ⌫µ ! N by paying the price of |Uµ4|

2. For NHNLs

Given N⇡ ⇠ 10%⇥NPOT, we then have NHNLs ⇠ 10%⇥NPOT ⇥ |Uµ4|
2. Since

we want the flux, we divide by the area of the sphere centered around the source

(note the neutrino and HNL emission is isotropic!),

�HNLs =
NHNLs

4⇡L2
. (0.4)

(b) Knowing that the muon lifetime is determined by the decay rate � = G2
Fm

5
µ/192⇡

3,

estimate the analogous decay rate for ⌫h ! ⌫e+e+.

Well, no trick here, just again, take �N ⇠ |Uµ4|
2G2

Fm
5
µ/192⇡

3. In principle,

since I did not specify what kind of outgoing neutrino we have in the decay, you

could also write �N ⇠ (|Ue4|
2 + |Uµ4|

2 + |U⌧4|
2)G2

Fm
5
µ/192⇡

3, corresponding to

the sum of ⌫h ! ⌫ee+e�, ⌫h ! ⌫µe+e�, and ⌫h ! ⌫⌧e+e�. This is not exactly

correct since we are neglecting factors of order 1 and the fact that the decay

1Note this is analogous to ✓2 in exercise 1, except that it is specific to the muon neutrino flavor
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⌫h ! ⌫ee+e� can proceed through either W or Z, but it is good enough for our

estimates.

(c) What is the probability for ⌫h to survive the distance L without decaying? What

is then the total probability for it to decay within a region of volume V = �3

located at a distance L from the source? You can assume � ⌧ L.

A particle decay survival probability is given by P = e�⌧/⌧L with ⌧L the lab-

frame lifetime. In terms of the decay with, ⌧L = �/�, where � is the boost of the

HNL. Now, we want the probability to decay inside the detector after a distance

L. First, the particle must survive a distance L, so Psurvival = e��NL/�� , where

� is the velocity of the HNL, � = v/c. Now we want it to decay within a linear

segment inside the detector. Let’s assume it is of size �, so Pdecay = 1�e��N�/�� .

Overall, the probability for a HNL to make it to the detector and decay inside

of it is just the product of these two things: Pdecay ⇥ Psurvival.

(d) Putting all of this together, write down a formula for the number of HNL decays

within this detector of size V . You can assume the HNL decays only via N !

⌫e+e� with a rate �N . Expand this formula assuming �NL and �N� are very

small. How does the signal event rate depend on the decay rate �N? What if

we add another decay channel for the HNL, like N ! ⌫⌫⌫̄?

First we want the number of HNLs that pass through our detector. We can

estimate it assuming the area of the detector is roughly �2. In that case, the

total number of HNL decays is

Ntot =
NHNLs

4⇡L2
⇥ �2

⇥ Pdecay ⇥ Psurvival ⇠
NHNLs

4⇡L2
⇥ �2

⇥
�N�

��
, (0.5)

where we expanded the exponentials to first order. Note that this expression is

actually proportional to the volume of the detector, V ⇠ �3. It is also propor-

tional to the signal rate �N . If you consider another decay rate, then we would

need to include an additional branching ratio factor in the whole formula. You

can convince yourself that in the end, since both exponentials only depend on

the total decay rate �N = �⌫e+e�+�⌫⌫⌫ , in the long-lifetime regime (�NL/� ⌧ 1

and �N�/� ⌧ 1), the total lifetime drops out of the formula and the signal is

only proportional to the decay rate you are interested in (�⌫e+e� in our case).

(e) In your preferred coding language, calculate this signal rate for fixed values of

|Uµ4|
2 and m4. Do this for a range of |Uµ4|

2
2 [10�8, 0.1] and 2 MeV < m4 <

30 MeV. Try drawing contours of constant event rate in this parameter space.

(f) Suppose the HNL decays via a stronger GX � GF four-fermion interaction with

SM particles. What happens to the contours in that case? Try, for instance,

GX ⇠ 103GF .
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