Exerase 1 - Characteristiddorkmatter(DM) speeds
Estimate the characteris tic speed of dark matter particles bound to the dark halos of several structures in the Universe using the Virial Theorem

$$
m v^{-2} \simeq \frac{G M_{\text {halo }} m}{R_{\text {halo }}}
$$

m : DM particle mass; $v=$ characteristic speed; $M_{\text {halo, }}$, R halo $=$ mass and radius of the structure (including DM)
Estimate the speed v for 1) a dwarf galaxy (typical masses and radius of $D G$ are $M_{D G} \simeq 2 \times 10^{6} M_{O}, R_{D G} \simeq\left(k_{p}\right)$
2) the Milky Way cor other galaxies, $M_{M w} \simeq 10^{12} \mathrm{Mo}$, $R_{\text {MW }} \simeq 100 \mathrm{kp}$) and 3) galaxy cluster (with, say, $\left.M_{C} \simeq 3 \times 10^{14} M_{\odot}, R_{C} \simeq 2 \mathrm{Mpc}\right)$. Those just quoted are approximate values for the dark halos of the mentioned structures.
Help: you will find very useful to write first Newton's constant G in units of $\frac{M_{p c} \mathrm{~km}^{2}}{M_{\odot} \mathrm{s}^{2}}$. Here
M_{\odot} is a solar mass, $M_{\odot}=2.99 \times 10^{30} \mathrm{~kg} \simeq 1.7 \times 10^{67} \mathrm{GeV}$, and $p c$ is a parsec, $1 P C=3.08610^{16} \mathrm{~m}=3.26 \mathrm{l} \mathrm{y}$.

Notice that in all equations in my lectures I use "Natural Units" $C=1, \hbar=1$ in which

$$
\begin{aligned}
& \text { Units } \quad c=1, \quad 1 \mathrm{GeV}=1.8 \times 10^{-27} \mathrm{~kg}=\frac{1}{0.19710^{-15} \mathrm{~m}}=\frac{1}{6.5810^{-25} \mathrm{~s}}
\end{aligned}
$$

Exercise 2 - Self Interacting Dark Matter (SIDM)
SIDM must have a cross section very close to its upper limit in a particular type of structure to be substantially different from the usual collision less CDM. The ratio $\left(\frac{\sigma_{\max }}{m} / 6 \times 110^{-25} \frac{\mathrm{Cm}^{2}}{\mathrm{GeV}}\right)$ is between a few- to 100 to have an effective core creation in dwarf galaxies, but is $\simeq 1 \mathrm{in}$ clusters \& here $\sigma_{\text {max }}$ is the maximum value of the self-interaction cross section). A constant cross section $\sigma_{\text {self }}=\sigma_{\max }$ which would be effective at dwarf galaxy scales would then be forbidden by the limits coming from galaxy clusters. But this may not be a problem if the cross section depends on the DM speed. Using the results you olotained in Excercise 1 say 2.1 Which dependence of the self scattering crosssection on the DM particles speed could give $\sigma_{\text {self }}$ in dwarf galaxies $\simeq 100 \times \sigma_{\text {self }}$ in galaxy clusters?
2.2 Probably you know that in Rutherford scattering the cross section is inversely proportional to the square of the kinetic energy, ice. $\sigma \sim 1 / v^{4}$. This is characte ristic of scattering mediated by a very light gauge boson. In SIDM models one has a "darkphoton" (or "hiddenphoton") instead of the usual photon but still if the mediator mass $m \phi \ll m_{D M} v \Rightarrow \sigma_{\text {self }} \sim v^{-4}$. Prove that if $\sigma_{\text {self }} \simeq \sigma_{\text {max }}$ in dwarfs, then $\sigma_{\text {self }}$ would be $\ll \sigma_{\text {max }}$ in clusters (so SIDM becomes just CDM at large scales).

Exercise 3 -Lower limit on the dark matter (DM) particle mass due to phase space arguments.
3.1 Assume the DM particle is a boson. Bosonstend to occupy the same lowest energy state. The occupation number is so high, that the DM behaves as a classical field obeying a wave equation (see Hu, Barkana and Gruzinov, astro-ph/0003365 Pr R.L. 85 (2000) 1158). The problem at hand becomes formally the same as that of a particle of mass equal to the DM mass, m, in a potential well of the size of the dark halo. So we can use Pauli's uncertainty principle $\Delta x \Delta p \gtrsim 1$ with $\Delta x \simeq z R_{\text {halo }}$ and $\Delta p \simeq m v$. Here v is the characteristic speed you estimated in Excercise 1. The most stringent lower limit on mifrom this relation comes from dwarf galaxies (do you see why?). Using the data and results of Excercise 1 prove that the limit obtained from dwarf galaxies is $m \approx 10^{-22} \mathrm{eV}$.
[A DM particle with $m=10^{-22} \mathrm{eV}$ was called "fuzzy DM" by Hu, Barkana and Gruzinov in the paper mentioned above. It is DM in a cold Bose-Einstan condensate, similar to axion DM.]

Exercise 3 (continuation)
3.2 Now let us assume that the DM particle is a fermion. The argument is different than for a boson. due to Pauli's Exclusion Principle. For a fermion the phase space density is al ways $f(x, p)<1$, so

$$
M_{\text {halo }}=m \int f(x, p) d^{3} x d^{3} p \lesssim m\left(\frac{4}{3} \pi R_{\text {halo }}^{3}\right) \int d^{3} p
$$

and for our estionate we can use $\int d^{3} p \simeq \Delta p^{3}$ and $\Delta p \simeq m v$ (you may see the original paper of Tremaine and Gunn PRL 42 (1979) 407 to get amore complete explanation. You may see also later papers by Madsen PRD 44 (1991) 999 and Horiuchictal. PRD 89 (2014) 025017, 1311.0283). Again dwarf galaxies provide the best lower limit. Prove that this limit is $m>$ few el.
(this is the so called "Tremame and Gunn limit").

Exerase 4. Flux of dark matter (DM) particles on Earth
4.1 Define fix, ie. number of particles traversing a surface per unit area per. unit time, in terms of $n=$ number density $=$ number of particles per unit volume, and $v=$ average speed particles.
In the following you may use for v either the characteristic speed for DM particles in the dark halo of the Milky Way (that you found in Exercise 1) or the speed of the Sun around the galaxy $v_{\odot} \simeq 220 \mathrm{~km} / \mathrm{s}$ (or you may just use $v_{\odot} \simeq 10^{-3} \mathrm{C}$ or just $v_{0} \simeq 10^{-3}$ in natural units). Also, we will use $P=0,3 \frac{\mathrm{GeV}}{\mathrm{cm}^{3}}$ as the local energy density of the DM ('local "meaning at the position of the solar system in our galaxy).
4.2 Find the characteristic flux of dark matter particles in units of number of particles per $\left(\mathrm{cm}^{2} s\right)$ as function of the DM particles mass m.
4.3 How many DM particles (again, given as function of m) are on average in a 1 liter soda bottle?

Exercise 5 WIMPs interact coherently with nuclei
Consider the elastic collision of dark matter (DM) particles of mass m with a target of mass M_{T}.
5.1 Show that for $m \gtrsim$ GeV the typical nomen. tum tranfer 9 (momentum imparted to the target, mitially at rest, so that the target recoil energy is $E_{R}=9^{2} / 2 M_{T}$) is such that the interaction is coherent when the target is a nucleus.

Help. The radius of a nucleus is $R_{N} \simeq 1.25 \mathrm{fm} A^{1 / 3}$ where A is the mass number $A, M_{T} \simeq A G E V$. You may use the limits $m \ll M_{T}$ and $m \gg M_{T}$ to establish typical values of q.
5.2 Considering that present direct DM detection experiments have at present energy thresholds not lower than a fraction of $k_{e V}$, , show that the maximum energy deposited in an elastic collision by a Light Dork Matter (LDM) particle, defined as DM particles with $1 k e V \lesssim m \lesssim 100 \mathrm{MeV}$ is below threshold for detection.
Help: the lightest nuclear mass in use in Direct DM defection is about $M_{T} \simeq 10 \mathrm{GeV}$.

Exercise 6 Relic Abundance

6a) Assume no asymmetry between particles x and antiparticles \bar{x}. Starting from the Boltzmann transport equation in an expanding Universe of the form

$$
\frac{d n_{x}}{d t}+3 H n_{x}=-\left\langle\sigma_{x \bar{x} \rightarrow \ell \bar{l}}\right| \vec{v}| \rangle\left[n_{x}^{2}-\left(n_{x}^{E Q}\right)^{2}\right]
$$

(l stands for "light particles", and $n_{x}^{E Q}$ is the equilibrium number density, $n_{x}^{E Q}=n_{\bar{x}}^{E Q}$ and, in general $n_{x}=n_{\bar{x}}$) for the evolution of the particle x number density derive the equation

$$
\frac{x}{y_{x}^{E Q}} \frac{d y_{x}}{d x}=-\frac{\Gamma_{A}}{H}\left[\frac{y_{x}}{y_{x}^{E Q}}-1\right]
$$

where $Y_{x}=\frac{n_{x}}{s}$, s is the entropy density $\left(S=\frac{2 \pi^{2}}{45} g_{* S} T^{3}\right)$ $x=m_{x} / T$ and the annihilation rate is $\Gamma_{A}=\left\langle\sigma_{x \bar{x} \rightarrow e e^{-\mid \vec{v}}| \rangle n_{x}}\right.$
[Hint: use $\dot{n}_{x}+3 H n_{x}=s \dot{y}_{x}$ due to the conservation of entropy, $s a^{3}=$ const. Here H is the Hubble parameter, a is the scale factor of the Universe]
The last equation shourstuat when $\frac{\Gamma_{A}}{H} \ll 1, Y_{x}$ remains constant T_{T} and this means that if s is constant the n_{x} is constant too -
[Yo umay consult any astro-particles bork.e.g. "The Early Universe" by Kolb and Turner to get help, in solving this problem]

6 b) Assume now a constant asymmetry. $A=Y_{x}-Y_{\bar{x}}$ (where $y_{x}=n_{x} / s$ and $y_{\bar{x}}=n_{\bar{x}} / s$), and we assume that n_{x} and $n_{\bar{x}}$ can only changedue to $x \bar{x}$ annihilation

Now we have,

$$
\frac{d n_{x}}{d t}+3 H n_{x}=\frac{d n_{\bar{x}}}{d t}+3 H n_{\bar{x}}=-\left\langle\sigma_{x \bar{x}}\right| \vec{v}| \rangle\left(n_{x} n_{\bar{x}}-n_{x}^{E Q} n_{\bar{x}}^{E Q}\right)
$$

\bar{x}_{1} the minority component. Until \bar{x} "freeze-out", at $\bar{x}_{f 0}$ the density of both components are those of equilibrium

$$
\left.\begin{array}{l}
n_{x}=g_{x}\left(\frac{m_{x}}{2 \pi}\right)^{1 / 2} e_{x}\left(\frac{m_{x} T}{2 \pi}\right)^{3 / 2} e^{\left(-m_{x}-\mu_{x}\right) / T}
\end{array}\right\} \begin{aligned}
& (\text { for } x \text { and } \bar{x} \text { nom- } \\
& \text { relativistic) }
\end{aligned}
$$

Where μ_{x} is the chemical potential (in equilibrivon $\mu_{x} \overline{=}=-\mu_{X}$). For $x>\bar{x}_{f 0}$. the production term (proportional to the equilibrium number densities) is suppressed, be cause $Y_{\bar{x}}$ becomes $<Y_{\bar{X}}^{E Q}$, and can be negleted. Prove that integrating the $d y \bar{x} / d x$ equation from $x=\bar{x}_{f}$ to $x=\infty$ (a good appoxiunction for the value at present) we get (assume s is constant)

$$
y_{\bar{x}}(x \rightarrow \infty)=A\left[e^{\left(A \int_{\bar{x}_{f_{0}}}^{\infty} \frac{\left\langle\sigma_{x x^{v}}\right\rangle S}{H x} d x\right)}-1\right]^{-1}
$$

(you may con sult for example Iminniyaz, Drees, chen 1104.5548 or Gelmini; Huh, Rehagen 1304.3679 to get help) Then $Y_{x}(x \rightarrow \infty)=A+Y_{\bar{x}}(x \rightarrow \infty)$.

Exercise 7 Decoupling or freeze-out of active neutrinos
Active neutrinos decouple while they are relativistic. Just estimate the interaction cross section

and $H=\sqrt{\frac{8}{3} \pi G P} \sim \sqrt{\frac{P_{\text {radiation }}}{M_{\text {planck }}^{2}} \simeq \frac{T^{2}}{M_{\text {Planck }}}}$
Prove that at large temperatures thereaction rate is $\Gamma>H$ and estimate the freece-out temperature $T_{\text {fo, for }}$ which $\Gamma\left(T_{\text {foo. }}\right)=H\left(T_{\text {foo. }}\right)$. (after, for $T<T_{\text {foo., }} \Gamma<H$ and interactionscuase) -

Exercise 8
Decoupling or freeze-out of nom-nelativistic parties
The solution for WIMPS without a particle -antiparticle asymmetry of the Boltzmann equation yields

$$
\Omega h^{2} \simeq 0.2 \frac{\left(3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\right.}{\left\langle\sigma_{A} v\right\rangle}
$$

You cancheck that in natural units

$$
0.6 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s} \simeq 10^{-37} \mathrm{~cm}^{2} \simeq 2 \times 10^{-10} \mathrm{GeV}^{-2}
$$

Let us consider twee examples of the use of this equation 8. a Consider a baryon-symmetric Universe. For strongly interacting particles the freeze-out value of $x=m / T$ is 40 instead of 20 for $W / M P_{s}$, but still
the order of magnitude of the remaining density of baryons and antibaryons in a baryon symmetric Universe if we use the equation for WIMPs mil be fine - Which is this value? Take the nucleon antinucleon annihilation cross section to be $\left\langle\sigma_{A} v\right\rangle \sim m_{\pi}^{-2}$ where $m_{\pi}=135 \mathrm{MeV}$.
8. b. Heavy neutral relics with $m_{x}<M, M=$ mediator mass. Assume no particle antiparticle asymmetry. Assuming $M \simeq M_{z^{0}}$ and interactions of weak order

$$
\left|\begin{array}{l}
x \\
\bar{x}>g \min _{l}<\bar{l}
\end{array}\right|^{2} \sim \sigma_{A} \quad \text { with } T, m_{l} \ll m_{x} \ll M
$$

Prove that $\Omega_{x} h^{2} \simeq N_{a}\left(\frac{G e V}{m}\right)^{2}$ where N_{a} is the number of annihilation channels. (This corresponds to the original bound on heavy neutrinos obtained by Lee and Weinberg in 1977)
8.c Heavy neutral relics with $m_{x} \geq M$ (again without a particle-antiparticle asymmetry). Assume now $T_{,} m_{l} \ll M<m_{\chi}$ and estimate σ_{A} on dimensional grounds, for a coupling of weak strength. Prove that $\Omega_{x} h^{2} \simeq \frac{1}{N_{a}}\left(\frac{m_{x}}{T_{e v}}\right)^{2}$

