Parenthesis: the ATOMKI experiment

- ATOMKI experiment: measurement of the angular correlation between e+e- pairs produced by *internal pair conversion* in the de-excitation of ⁸Be* nuclei
- ⁸Be* nuclei produced hitting a ⁷Li target with a ~1 MeV proton beam
- Pair spectrometer detector composed of "telescopes": Multi Wire Proportional Chambers (MWPC) for impinging position definition and plastic scintillator for energy measurement

arXiv:1504.01527v1

⁸Be* transitions

ATOMKI: study of the M1 transitions from excited ⁸Be* states

Internal pair conversion: the photon emitted due to the de-excitation converts in a e+e- pair in the nucleus

 $^{7}Li(p,\gamma)^{8}Be$

~ ~ ~ ~ ~ ^{^ ^ ^ ^}

1200 E_ (keV)

Excited states (18.2 MeV, 17.6 MeV) obtained with 1030 keV and 441 keV proton beams

New physics hints?

ATOMKI anomaly: observed unexpected peak in the e+e- opening angle distribution!

Possible explanation: new short lived particle with mass ~17 MeV (X17) decaying to e+e- pairs

Additional studies:

Same anomaly observed with a new experimental setup and on excited He nuclei

arXiv:2104.10075v1, J. Phys.: Conf. Ser. 1056 012028

May it be a dark photon??

 There is still some free parameter space compatible with a Dark Photon explanation of the ATOMKI anomaly

Resonant A' production

 Idea: X17 production via e+e- resonant annihilation on thin target at the exact beam energy such that:

$$\sqrt{s} = \sqrt{2m_e E_{beam}} = m_{X17} = 17 \ MeV$$

Resonant annihilation:

- > Better $\alpha_{\rm FM}$ scaling than the A'-strahlung
- Large cross section in a very narrow range of sqrt(s)
- ➤ Ideal to search for a candidate with known mass!

$$\sigma_r = \sigma_{\text{peak}} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4} , \ \sigma_{\text{peak}} = 12\pi/m_{A'}^2$$

Need a positron beam with energy: E_r

The PADME experiment at LNS

 PADME: search for X17 via resonant annihilation, performing a "scan" in beam energy around the resonance value

arXiv:2209.09261v2

The PADME detector

arXiv:2405.07203

The Heavy Photon Search (HPS) Experiment

✤ Given the narrow width of the X17/A', the resonant production yield depends critically on the beam energy

 \rightarrow by performing several measurements varying the energy of the beam in small steps, it is possible to observe the rate increase of the e+e- pairs impinging on the ECAL, when the beam energy comes close to the resonance

- The overall increase in e+e- rate at the resonance is of order ~1% or less
 - It is critical to monitor the stability of the beam

arXiv:2209.09261v2

PADME projected sensitivity

✤ Two scenarios considered:

Conservative: $2 \cdot 10^{11}$ total PoT, a 0.5% beam spread, a broad energy range [265, 297] MeV, an energy scan with 12 bins

Aggressive: 4×10^{11} total PoT on target, a 0.25% beam spread, a narrow energy range [273, 291] MeV, and an energy scan with 14 bins.

arXiv:2209.09261v2

Light DM searches at accelerators - thin targets

Beam dump experiments

- ✤ General concept:
 - ▶ high intensity particle beam impinging on a thick-target, the *beam dump*
 - LDM particles produced by the interaction of the beam in the dump (radiative processes, SM particles decays...)
 - Detector located O(10-100 m) downstream
 - Passive/active shielding usually placed between the dump and the detector
 - Search LDM scattering/decays within the detector

Several variations:

- Beam: typical e⁻,p; energy
 ~10-100 GeV
- decay volume?
- □ distances, shielding

A' production in electron beam-dump experiments

In electron beam-dump experiments, the beam impinging on the target gives rise to an electromagnetic shower \rightarrow large number of secondary e⁺,e⁻ but also muons are produced

Introduce the *differential track length* $\frac{dT}{dE}(x)$: the average path of particles with energy in the (*E*, *E*+*dE*) range Secondary particles can improve significantly the A' yield in beam-dump experiments

A' production processes with e^+ and e^-

Resonant annihilation "scan" at beam-dumps experiments

$$N_{A'} = \frac{N_A}{A} Z \rho \int_{E_{min}}^{E_0} \frac{dT_{e^+}}{dE}(E) \sigma_r(E) dE$$

The E137 experiment

ALPs search experiment, results re-interpreted as LDM search.

- **Beam:** 20 GeVe-beam, 2×10^{20} EOT
- ✤ Target : Water-filled Al beam dump
- Shielding: 179 m of ground (hill)
- ◆ Decay volume: ~150 m (air)
- ◆ **Detector:** 8 X₀ EM calorimeter + MWPC

No ALP-compatible signal (deposited energy larger than 1 GEV, pointing towards the dump) observed during operation; results re-interpreted both in the visible and invisible decay scenario

E137 - Visible re-analysis

- The large collected charge allows E137 to explore coupling down to $\sim e^{-8}$
- Limitation at higher coupling values comes from the limited A' lifetime (decay occurs in the shielding)

1209.6083

E137 - Invisible re-analysis

- ✤ E137 results recast in the LDM scenario
- Flux of LDM particles from decay of A' produced in the target (A'-strahlung, annihilation)
- Signal: Elastic LDM-electron scattering in the detector -> EM shower

$$\frac{d\sigma_{\chi e}}{dE_R} = 4\pi\alpha\alpha_D \varepsilon^2 m_e \frac{4m_e m_{\chi}^2 E_R + [m_{\chi}^2 + m_e (E - E_R)]^2}{(m_{A'}^2 + 2m_e E_R)^2 (m_{\chi}^2 + 2m_e E)^2}$$

arXiv:1406.2698v2

The Beam Dump eXperiment (BDX)

Modern beam-dump experiment proposed at JLab: 11 GeV e– beam, Al/H2O beam-dump optimized for invisible searches

- Detector installed O(20 m) behind Hall-A beam
 -dump, in a new experimental hall
- Passive shielding layer between beam dump and detector to reduce SM beam-related background
- Sizable overburden ('10 m water-equivalent) to reduce cosmogenic background

Detector Design:

- EM calorimeter: CsI(Tl) crystals+SiPM readout (active volume ~0.5 m³)
- Dual active-veto layer Passive lead layer surrounding the calorimeter

arXiv:1607.01390

BDX at JLab

JLab offers the best condition for BDX:

- Medium energy beam (11 GeV)
- Figh electron beam current (65 μA)
 - possible to acquire a statistics of 10²² electrons on target in less than 1 year of beam time
- Possibility to run parasitically to other experiments running in Hall-A (Moeller)

The Hall A beam-dump

- The beam-dump is made of a set of ~80 Al disks, ~40 cm in diameter of increasing thickness (from 1 cm to 2 cm)
- An Al cylinder 50 cm in diameter and
 2 m thick follows the disks
- Both the disks and the cylinder are cooled by circulating water
- The beam dump is enclosed in 4-5 m thick concrete bunker to increase radiation shielding

The BDX detector

BDX detector: state-of-the-art CsI(Tl) EM calorimeter

- Detector design:
 - 800 CsI(Tl) crystals, total interaction volume 0.5 m3
 - ➣ 5 cm thick lead shielding
 - Dual active-veto layer (IV and OV), made of plastic scintillator counters with SiPM readout
- Calorimeter arrangement:
 - module: 10x10 crystals, 30-cm long; front face: 50x50 cm2
 - modules: interaction length 2.6 m
- Signal:
 - EM-shower, (threshold: 300 MeV), anticoincidence with IV and OV
 - Efficiency: O(50%) dominated by EM shower splash-back to veto counters

possibility: re-use BaBar Crystals?

CsI(TI) crystals

Optimal material choice for BDX:

- ✤ high light yield
- ✤ Reasonable density
- Fast enough rise time (order 5 ns time resolution with SiPM readout)

CsI(Tl) properties

Parameter	Values
Radiation length	1.85 cm
Molière radius	3.8 cm
Density	4.53 g/cm^3
Light yield	50,000 γ /MeV
Light yield temp. coeff.	0.28%/°C
Peak emission λ_{max}	565 nm
Refractive index (λ_{max})	1.80
Signal decay time	680 ns (64%)
	3.34 µs (36%)

Cosmogenic backgrounds

- Cosmic rays and cosmic ray-induced particles can produce a background for an experiment such as BDX, if they cross the veto system undetected and deposit ~300 MeV energy
- This background was evaluated by an ancillary measurement performed with a small prototype detector: *BDX proto*, whose results have been scaled to the full BDX dimensions

Energy threshold	Extrapolated rate
200 MeV	$(3.6 \pm 1.5) \cdot 10^{-8} \text{ Hz}$
250 MeV	$(2.9 \pm 1.3) \cdot 10^{-9} \text{ Hz}$
300 MeV	$(2.4 \pm 1.1) \cdot 10^{-10} \text{ Hz}$
350 MeV	$(1.9 \pm 0.9) \cdot 10^{-12} \text{ Hz}$

0 cosmic background events expected with an energy threshold over 350 MeV

Beam related Backgrounds

- Penetrating SM particles produced in the dump (muons, neutrons, neutrinos) can hit the detector mimicking the LDM signal
- This background can be evaluated only with simulations
- The large charge collected by BDX (1022) EOT makes impossible to simulate the whole experiment -> Biasing

Neutrino induced background

- Not negligible neutrino flux impinges on the BDX detector
- ★ Most dangerous reaction: electron neutrino CC $v_e N \rightarrow e \chi$ resulting in high energy e scattered within the detector
- Possible mitigation exploiting difference in kinematics between CC and signal
- Expected ~5 neutrino background events in the whole data taking

BDX projected sensitivity

BDX - mini

Small scale demonstrator for technical design validation:

- 0.15% of BDX active volume (44 PbWO4 crystals, 4 dm³), SiPM readout
- High efficiency hermetic multi layer veto (2 active vetoes + passive tungsten innermost layer)

BDXmini- Measurement

- ◆ Experimental setup:
 - \rightarrow 2.2 GeV, 150µA beam impinging on hall A
 - Detector installed in a well 25 m downstream
 - > 20 % of BDX total charge collected (2 × 10^{21} EOT)

arXiv:2208.01387v1

The SHiP experiment

SHiP (Search for Hidden Particles) proton beam-dump experiment searching for dark sector particles at CERN SPS

arXiv:1504.04956

The SHiP

Optimized for the exploration of a broad BSM physics target

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$ (invisible)
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$ (IIIVISIDIE)
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

CERN Super Proton Synchrotron

- SHiP will make use of the SPS proton beam
 - ≻ Energy: 400 GeV
 - > $2 \cdot 10^{13}$ proton per spill of 7.2 s
 - average power during extraction: 2.56
 MW
- Total accumulated statistics: 5·10²⁰ POT

arXiv:1504.04956

https://www.flickr.com/photos/arselectronica/5679905067

The SHiP target

- ◆ 10 nuclear interaction length long production target (~ 120 cm)
- High-Z target, composed of TZM (molybdenum/tungsten alloy) and pure W
- $30x30 \text{ cm}^2$, segmented target
- ◆ 58 cm TZM (13 layers) + 58 cm W (4 layers)

The muon shield

- ✤ Given the energy scale of the muons produced in the target, it is impossible to stop them with passive materials (production rate 5 · 10³ muons/ spill)
- \rightarrow magnetic shield based only on magnetic sweeping
- Residual flux on detectors: $7 \cdot 10^3$ muons/ spill (negligible)
- Shield dimensions: 28 m length , 2800 tons weight

arXiv:1504.04956

The SHiP detector

The SHiP spectrometer scale

arXiv:2112.01487

Expected SHiP sensitivity to A'-mediated LDM scenarios

- $5 \cdot 10^{20}$ POT in 5 years of operation
- A' production via several processes: radiative, Drell Yan, meson decays

arXiv:2010.11057, arXiv:2011.05115