
Dicke model with photon losses

Brief introduction to the Dicke model

Over the course of lectures thus far you
have been introduced to

some general concepts of open quantum systems as well as to advanced

methods employed to tackle the dynamics of such systems . Today ,
we'll

apply this knowledge to one of the most paradigmatic models in quantum
optics and physics of open systems : the Diane model

.

In its simplest form ,
the Diare model describes a single bosonic mode

cusually a photon in a cavity) coupled to a set of N two-level systems
(the atoms)

.

The Dicuc Hamiltonian reads

N N

# = wit + w+ (a+)S (1)

Here
,
at anda are the creation and annihilation operators , respectively ,

satisfying [*] = 1
,

and 6:
"

are spir-ye operators : [. ] = iSij
The Yo prefactor ensures that the energy is extensive

.
The simplest way to

see it is by "integrating out the photon field a, which yields an all-to-all

interaction - N" (IS) ~ O(N)· Note also that the dependence on the atomic

degrees of treadom enters only via the total spin 5t = 25% Thus
, despitei

its many-body appearance ,
the Dicke model describes a "big fat spin" interac-

ting with photons .

In the following ,
we will focus on the nonequilibrium case of the Dice

model
,
in which the system is subject to an external coherent driving as

wall as to dissipative losses
.
While an actual experimental implementation of

the model is far from being trivial
, schematically the setup can be visualized

as follows :
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Potential dissipative processes are modeled using the Lindblad equation
formalism :

2+5 = - i [h
, j] + 28:@[[i]

,
(2)

i

with bil] = zight - SE2 . 93 .



Main sources of dissipation :

In this leature
,

we will neglect

a will only take into account

shoton dissipation.

I=>
all potential atomic losses and

The superradiant transition

The light-matter interaction coupling g is controlled by the external pum-

ping strength . Photons from the external laser field rascatter off the atoms

and populate the cavity mode wa land vice versal
.

At a certain point ,
as

we keep increasing
the strength g ,

the cavity mode becomes macrosco-

pically occupied (photon condensate .

One says that the Dicke model

exhibits the superradrant transition.

As you probably known
,
continuous) phase transitions can be related to

spontaneous breaking of some symmetry .

What is the symmetry associa

ted with the supperradiant transition? The Hamiltonian (1) is symmetric
under the global 12 transformation :

~
x X

22 : a - - , 6 :
- -Si (3)

This symmetry reflects the parity-conserving nature of the interaction :

-

[F
,
P1 = 0

,

D = (1)
Nat

,
with Nex = at + [S

&

Nonequilibrium dynamics of the open Dicre model

We know that depending on the strength of the interaction g ,

the

system may
have a very different steady state

.
What is the critical value

o the coupling go that separates the two phases ? And perhaps even more

interestingly ,
how does the system reach it ?

Before jumping to field-theoretic methods let's try a more straightforward
approach· Recall that expectation values of observables avolve

, according to

the Lindblad equation ,
as

2( = i([F ,]) + [V([[ ,
[ :] + []i :Y 14)



In our case
,
V:

= R
,
[+ . After some simple algebra ,

one finds

-(a) = - (iWc + k)(a) - Zig ,

2+ (5x) = -Wals"Y
(5)

2+4) = Wz46
*

Y - ((a + a)57)
,

2+ (57) = ((a + a)5"Y
,

with 15% = (5) /N = Sc
,

(a) = 2
.

Ex : Derive it
.

We note that the system of equations (5) is not closed : on top of the

↓ point functions ,
it also contains 2-point functions . If we now derived the

equations governing the dynamics o the 2-point correlators , they would

clearly include 3-point functions ,
etc. The result is an infinite hierarchy

o differential equations . it . BBGKY.

One
way to close it

,
is to truncate the

correlation functions at a certain order. For instance
,
to lowest order

,

Lay = (a)(5
,

which yields the mean-field approximation :

2+ x = - (iWc + k)x - Zigg

G+ S = -WaSY
,

(6)

2+ SY = Gas - z(x + x
+)57

,

2+ 87 = (x + (7)S"

The corresponding steady-state solution is given by
-

SE = / - (E)
,
SE = 0

,
SE =-We=I

Using the condition Kal30 for gagc ,
we easily find

/

MF

ga =

2+ (8)

Note that the condition (= (a)(5%198% = 0
,

so the approxi
mation was in fact neglecting connected two-point correlation

functions. Extending upon this
idea we might have instead truncated

at a higher order. This approximation scheme is unown as the numn-

laut expansion , for obvious reasons .

Though very straightforward ,
this approach is non-conserving and

sup-
fers from secularity problems. Thus

,
at a certain point , it is bound to

fail .



Q : Note
,

however
,
that the mean-field approximation is conserving .

Could

you guess why ?

Spin degrees offreedom and the path integral

As has been argued throughout the course
,

a good candidate for a con-

serving and self-consistent description of the dynamics of a nonequilibrium
quantum system is given by the IPI formalism .

To use it, we first need
todransform our Dicke Hamiltonian into its appropriate Lagrangian counter

part .

It might feel tempting to work directly with the spin degrees offreedom
using the spin coherent-state path integral formulation . Schematically ,

the latter

has the form

z = SDS(1-2) e-Seln) (9)
I

where for simplicity we considered a single spin in Encidean space. Need

less to say,
the

presence of the constraint i= 1 doesn't look too appealing ,

especially having nonequilibrium in mind. Of course
,

we could instead employ
a parametrization that automatically taves care of the constraint (Euler angles)

,

but then the action would contain terms cost
,
sino

,

etc
.,

which is not

very convenient for developing approximation schemes.

It is thus suggestive to map
the original spin d

. o
. f. Onto some newauxiliary

ones
.
There are

many options
on the market :

1) Jordan-Wigher :

5= exp(ii) ,
ji =2 -E

,

170)

with appropriate fermionic operators [,
2

;3
= Sij , h, j3 = G

,

2
j
3 = 0

.

This map is only suitable in ID
.

2) Holstein - Primaroft :

8 = - M2 + 5
,

5= 5
,

5 =F
,

(1)

with bosonic operators [B ,
] = 1.

This map is very
monlinear and thus forces one to do a YN expansion

usee below from the
very beginning. A viable option for semiclassical compu

tations , but we can do "better"



3) Jordan-Schwinger :

= is Ts Bis 5.s'c[1
.

23 [12)

with it being the Pauli matrices and b
..
ba being bosonic annihilation

operators.

The map is now only bilinear ,
which is good. The suces Casimir element is

given by

=( + 1)
.

M = Ess
.

(13)

Hance
,
to ensure the constraint

, one must have M = I
on the operator level

14 also dynamically) . While this sounds doable
,

the condition suggests to adopt
a different type of auxiliary do .t , for which the condition will be satisfied
by construction.

4)Martin transformation (Majorana fermions) :

5% = -V , (4) = Sj9**, B .
VeEX

, y ,
z3

. (4)

Ex : Verity that [5:%5) = iSijEV and
2

= 3/4
.

ZPI approach

Adopting the map (14) the Schwinger-Keldysh action in the presence of photon
losses takes the form :

S = &dttlaza-azat)-weat + (2 +" + zweiy:") +

-> (a+ay] - infdt(2a+ GE - aa+
- aa-)

.

[(5)

Since the interaction term depends on
the photon fold only through the

combination a at
,

it is convenient to introduce

a = (p + iπ/wa) - q= (a+)
,

i = - i d (a - a+)
.

(10)

to wit

S = IdtIt (+2+ - pa+π) - z(wp + +) + = z(y2+y + zwzii) + igim
C

- inwSdt[p + 4- + ik+
+

- /Wc - iP-πH(w + π+T- (wi - z(q2 ++z/wz + 42 +
π=/wi)]

,

(17)

whereg =JTWIN'g



The 2PI effective action taves the usual form Majorana
propagator

L

↑ = S + TrhD" + TrDoD-ETrhG" - TrGG + T2
,

(18)

photon
propagator

~it in = - ihheisint Year being the sum of all the IPI (w.
r

.
t

.
dressed

propagators) connected vacuum diagrams.

The quantum equations of motion take the form

--

STrIG(k)G]SS
+

STz
= 01 (1Sa)

Skalt) Ska(t) Stalt)

[ (D - [30D]ab(t ,+) = Sabf(t-+)
,

(1Sb)

[ (G - 1)0p]ij(it) = SapSij8<P S(t-+)
.

(ISc)

One can proceed working either in the original I-basis or perform the

Keldysh rotation
,

18:) = (i)(8) (20)

In Keldysh basis ,

the Dyson equations read

↳D - Di + KD = 0
,

2Dig - Dig + Dig = :I
,

(2(a)
+Dat T wiDig +D + iZD = it

I

+Di + wiD + KD + :Dig = 0
,

↑

2D - D + Daal-iD = o
I

·Da-D+D-iD = 0
.

(21b)

2D + WID +D + iKwD + Di D = 0

2D + wD +D + ikweD +D +i D = 0
,

- ceral with <g
- ga) and K--- K

.

Here
,

o denotes temporal convolution , (fog)(t+) = Sat "f(t ,t") g(t"t) ,
and

E is the
proper self-energy

:

& (t
,
+) = 2i

STz
(22)SDB(t ,

t)



We'll derive one of the equations and leave the rest as an exercise
.

In matrix notation
,

one of the Dyson equations read :

&(IDD
-(D-I = 0

O ( (23)

For instance
,

the daventry then yields

(D) D-ED +DD + (DolD-ED = 0
.

(2)

The relevant inverse bare propagators ,
Do = -iS'

,
read

(D =WISH-t)
. (D : iS(t-ti)(2 + 1)

, (Dol = KWS(t-t)
.

(25)

Ex : Show it .

Putting everything together we end
up

with

+Ditt) = - wDitt) - rD(tt) + iRwcDatt) -

- iSdt"[t")Dt) - iSdtt")Ditt (26)

Since retarded and advanced propagators are not independent of each other,
one sometimes instead with a linear combination thereof ,

Daq(tit) = - ig(t ,tO(t-tY
, Dqa(tit) = ig(htOCti- t) ,

(27)

known as the spectral function 9 = :(Daa - Dqa) · Likewise ,

&xq(t ,t) = - i[* (t)8(+ - +) + i Eg(t ,
t)O(t'- t)

,

(27)

&qu(til') = - iz
* (t)S(t-t) -

: Eg(t ,
t Olt-tY)

,

so that

Gt F** (t
,t) = - (t)F** (tt) - F** (tt] - KWgt(tit)O(t- 1) -

t zi

- Idt"[t")*t +d)* (28)
to

with F = Daci
,
IF = Egg ,

and (t) = w? + (t).

Ramark : the Keldysh propagator Dan is sometimes referred to as the

statistical function in the literature
,



Analogously ,

the Majorana equations are

(842+ + :mar) pVBj(t) - MiroGanj = &Gij(+ - +)
.

(92++ imdr)[ijt) - Mino Du = 8*Sight - +)
S

(2S)

(8
%

2 + imar) Crit) - Minors - Minor = 0.

with O WZ ⑧
STz

imp = -we 0 & Mij(t) = - 2i

SajHit(
O - 6 S

I
Note that action (15) is invariant under the garge 12 symmetry

I ~[
which implies(H) = Sij(*H ,

+i)
, M

*
(t

,
+) = SijMC*(ti)

. Assuming Mother
homogeneity (B( ,

+
,
i) = G

&P(t,+) ,
etc.

Finally ,

the equation yields the MF equation for the photon fields :

24 = T - k4 ,
is

*
(t)

- (30)

w+T = - wEq - k + igNG(t ,+) .

IN expansion

To close the set of Dyson CorKadanoft-Bayml equations ,
it is left to

specify the approximation for the self-energies [and M
,

or equivalently ,

for 12. The most common expansion scheme is the familiar parturbative
coupling expansion ,

which relies on the smallness of the coupling g.

However
,

the Dicke model offers an alternative
, conperturbative expansion

parameter : "N .
As we have already discussed

,
the Dicke model actually

describe a big spin of length N/2 interacting with photons. Therefore,
physically ,

we expect that at N -30 the description becomes ↑My classi-

cal
,

while quantum fluctuations should be completely suppressed (think
of self-averaging) .

Formally ,
this can be argued as follows. The first terms in (15) stam from

the classical action and thus scale extensively with the system size N.



What about 12 ? While the Kadanoft-Baym equations were derived in the Keldysh basis
.

it is more convenient to work with is on the Schwinger-Veldysh contour Heuer

kinds of vertices and propagators is fewer diagrams) and simply decompose [
at the last step . Introducing the diagrammatic notation ,

D)= = m
&

(t) = Y =
I

ig
,

at = ~
&

the first contribution tares the form

Each verter yields Yo and the trace adds

You an additional factor of
N ↳ OCNO)

.

In fact ,
this is the only next-to-leading order (NLO) diagram in the Dicre

model
.

Ex : Show that at NNLO
,

there are two diagrams

·
·

o

·
·

self energies at NLO in YN

The analytic expression for To reads

To =-d<Y
(31)

=- C - GG(t+)] .

Hence
,

the NLO photon self-energy is

= + (,+) = Nog2[(
*=
(,+)

**
(t

,
+) - p

**
( ,+)G*7(t

,+)] · (32)

Likewise
,

2 .g.

MYY(t , +) = - 2 D4*(+,+)G72(7 ,+) . (33)

Ex : Derive the rest
.



If you prefer working with F and g ,
here's a neat trice to decompose

2. The causal structure of the propagators can be summarized as

D(t
. t') = F(tit) - g(tt'] squa(t-t')

,
(34)

and likewise for G
. Similarly ,

&(tt) = - i [*(t)S(t-t) + [i(tt) - EgCt,t] squa(t-tY ,
(35)

and same for M.

Now it's very simple to decompose the self-energies. For instance
,

[* (tt) = Ng2 [F***(ttFeY(t) -+Stget) - FEYCtYFett) + Ct)g*(t] ,
138a)

= (tt) = N2 [g** (tt) Fe
*

Y(tt) + Fttgt) - g(tFett - FilttYCttY] .
1383)

Some details regarding numerical implementation

It goes without saying that the Kadanoft-Baym equations , being a set of

coupledmonlinear partial integro-differential equations ,
are way too hard to solve

analytically ,
and one has to resort to numerical methods.

Before we proceed ,
note that the propagators are functions of two time

arguments: and t. Therefore ,
to cover the whole time domain

,
we need to

be able to propagate along the -direction as well. This can be achieved

by considering the"dual" Dyson equations :

[D 0 (D: - [b]ab(t ,+) = Sabf(t-+)
,

(37a)

[ 40(G - M)Jij(it) = SapSij8<P S(t-+)
.

(37b)

On the other hand
, using the symmetry properties

FP(tit') = FBd(tit')
, g

*B(tt) = - gBx(tit)
,

(bosons]

(38)

FIB(tit') = - FBC(tit') , giB(tt) = SqBa(tit) ,
<fermions)

we can propagate equations along the taxis and then reflect the result

using (38).

The only missing ingredient in the above scheme is propagation along the

diagonal . Introducing the notation
,

defCtt) = (0 + + wt) f(t ,t(+ =t
(39)



one finds , for instance
,

t

↓- F**(
,+) = F

**

(t
,
t) - 22(t)F** (t) - 2rF**(eit) - Idt"[st") F**tit) - L

*

At")g**it)]
12 (40)

G F** (t
,t) ( + =+.

+ GtF** (tit) ( + =

= 2- [F** (t
,
t) + F** (t

,t')]) + = +

and ~ quantum 12"
L

d + F** (t
,t) = 2 [F** (t

,
+) - k(F ** (tit) - )]

.
(41)

The spectral components ,
on the other hand

,
remain unchanged on the

diagonal :

9
* (t,t) = -

g
++ (t

,t) = - 1
, git) = ig&B

,
(42)

and follow from
the cantil commutation relations for bosons (fermions) .

Romain : One
may show that

F
&

P(tt) = (99(t)
.
[P(t)3) - <(1)(P(t)Y

, g
*P(tit) = i <[p* (t)

.
[B(t)]Y

,
(bosons)

FiP (tt = < in* (t)
. YPCt]Y , gett = i <59(t)

, YP(t)3) . Hermions)

and dog = 0.

To summarize
,
one can swetch the following scheme :

data needed
t M to compute this point
- -

C
----- ---- ·

I ·

i > diagonal propagation (dtF
, deFf ,

2+4 .
2+iT)- > propagation along + (E+F

,
G+Ff ,Ceg,

0+f)

Gro Cizi·

. arean
"

2- "
· reflecting the data (c+ -

1381)
3

Gio · · · z'Giz

1 %- Gi, 1 "
1 2 I

·

-Goo
, to Gos Goz

What is the numerical cost of solving the2PI equations? Well
, suppose wa

want to propagate an equation along tat fixed (t ,t). Due to numerical intey
ration on the RHS this requires Oft) operations. Going through each +

~

↑ OtomaveFiwereare N steplivethis s
plexity



scales cubically with the number of timesteps. Obviously ,

the memory costs
,
however

,

sales quadratically with the number of timestops.

What schemes can one use ? In order not to lose the self-cosistency ofZPI ,
it is

very advisable
to use implicit method. In practice ,

one normally adopts the

predictor - corrector approach for that and iterates until the desired convergence

is reached. Of course
,

one can use any sensible solver combinations for this.

Suppose ,
however

,
we compute the memory integrals on the RHS using the simple

trapezoidal rule. The error is then Oxt) making using fancy higher-order
schemes essentially meaningless. The most commonly used scheme in this

case is the so-called implicit Heur's method :

Y'(t) = f(t , y(t)) , y(to) = yox y =

y:
+ xt- f(ti , yi) ,

<predictor)

y = y:
+ [f(tiyi) + Altit ,

Y)] .
Corrector)

More sophisticated approaches may
involve having an adaptive guid , using higher-

- order schemes
,

etc. In addition
,

one may consider approximations on the

level of the Kadanoft-Baym equations themselves· The most prominent ones

are cal employing the so-called generalized Kadanoft-Baym ansatz and

(b) memory truncation (Sodt - Sitrna) .
A good pedagogical read on the

subject with some references is
,

e .g.,
artiv : 2110

.
04793.

To get some feeling ,
a typical numerical run for the Dicke model with Nt = 250

timesteps taves about -1 minute on a single thread.

Remark : In the class presentation ,
the numerical tolerances were set too low,

which affected the performance without much
accuracy gain .

The lesson is :

play with
your numbers to find the right balance !


