Dick model with photon losses
Brief introduction to the Dike model
Over the course of lectures thing far you have been introduced to some general concepts of open amantum systems as well as to advanced methods employed to tacele the dynamics of such systems. Today, weill apply this knowledge to one of the most paradigmatic models in quantum optics and physics of open systems: the Dicue model.

In its simplest form. the Dicue model describes a single bosonic mode usually a photom in a cavity) coupled to a sat of N two-leval systems (the atoms). The Dicu-e Hamiltonian reads

$$
\begin{equation*}
\hat{H}=\omega_{c} \hat{a}^{+} \hat{a}+\omega_{z} \sum_{i=1}^{N} \hat{\sigma}_{i}^{t}+\frac{2 g}{\sqrt{N}}\left(\hat{a}+\hat{a}^{+}\right) \sum_{i=1}^{N} \sigma_{i}^{k} . \tag{1}
\end{equation*}
$$

Here, \hat{a}^{+}and \hat{a} are the creation and annihilation operators, respectively, safistyins $\left[\hat{a}, \hat{a}^{+}\right]=1$, and σ_{i}^{α} are spin- $1 / 2$ operators: $\left[\hat{\sigma}_{i}^{*}, \hat{\sigma}_{j}^{p}\right]=i \delta_{i j}^{1} \varepsilon^{\alpha \beta \gamma} \tilde{\sigma}_{i}^{\gamma}$. The $1 / \sqrt{N}$ pretactor ensures that the energy is extensive. The simplest way to see it is by "integrating out' the photon field \dot{a}. which yields an all-to-all interaction $\sim N^{-1}\left(\sum_{i} \hat{G}_{:}^{-}\right)^{2} \sim O\left(N^{2}\right)$. Note also that the dependence or the atomic degrees of freedom enters only via the total spin $\bar{S}^{\alpha}=\sum_{i} \bar{\sigma}_{:}^{k}$. Thus, despite its many-body appearance, the $D=e n e$ model describes a bis tat spin- interactting with photons.

In the following, we will focus a the nonequilibrinm case of the dive model, in which the system is subject to an external coherent driving as wall as to dissipative losses. While an actual experimental implamentation of the model is far from being trivial, schematically the setup cam be visualized as follows:

Potential dissipative processes are modeled using the Lindblad equation formalism:

$$
\begin{equation*}
\partial_{+} \hat{\rho}=-i[\hat{H}, \hat{\rho}]+\sum_{i} \gamma_{i} \infty_{\infty}[\hat{L} i], \tag{2}
\end{equation*}
$$

with $\operatorname{xx}[\hat{L}] \equiv 2 \hat{L} \hat{\rho} L^{+}-\{\hat{L}+\hat{L}, \rho\}$.

Main sources of dissipation:

rate	Lindblad operator	physical process
κ	a	cavity loss
γ	$\sum_{j} \sigma_{j}^{-}=s_{-}$	collective atomic decay
γ_{l}	σ_{j}^{-}	single-atom decay
γ_{ϕ}	σ_{j}^{2}	single-atom dephasing

The superradiont transition
The light-matter interaction coupling g is controlled by the external punping strength. Photons rom the external laser field rescatter oft the atoms and populate the cavity mode ω_{c} (and vice versa). At a cestern point, as we keep increasing the strength 9 . the cavity mode becomes macroscopically occupied ("photon condensate"). One says that the bice model exhibits the smperradiant transition.

As you probably known, (continuous) phase transitions can be related to spontaneous breaking of some symmetry. What is the symmetry associated with the suppersadiant transition? The Hamiltonian (i) is symmetric under the global \mathbb{Z}_{2} transformation,

$$
\begin{equation*}
\mathbb{Z}_{2}: \hat{a} \rightarrow-\hat{a}, \quad \hat{\sigma}_{i}^{x} \rightarrow-\hat{\sigma}_{i}^{x} . \tag{3}
\end{equation*}
$$

This symmetry reflects the parity-conserving heture of the interaction: $[\hat{H}, \hat{P}]=0, \hat{P}=(-1)^{\bar{N} a_{x}}$, with $\hat{N}_{c x}=\hat{a}^{+} \hat{a}+\sum_{i} G_{i}^{*}$.

Nonequilibrium dyuamies of the open Dice model
We know that depanding on the strength of the interaction g. the system may have a very different steady state. What is the critical value of the coupling ge that separates the two phases? And perhaps even more interestingly, how does the system reach it?
Before jumping to tield-theoretic methods let's fry a more straightforward approach. Recall that expectation values of observables evolve, according to the lindblad equation, as

$$
\begin{equation*}
\partial_{1}\langle\hat{O}\rangle=i\langle[\hat{H}, \hat{O}]\rangle+\sum_{i} \gamma_{i}\left\langle\hat{L}_{i}^{+}[\hat{O}, \hat{L}:]+\left[\hat{L}_{i}^{+}, \hat{O}\right] \hat{L}:\right\rangle . \tag{4}
\end{equation*}
$$

In one case, $\gamma: \rightarrow \kappa, \hat{L} \rightarrow \hat{a}$. After some simple algebra, one finds

$$
\begin{align*}
& \partial_{+}\langle\hat{a}\rangle=-\left(i \omega_{c}+k\right)\langle\hat{a}\rangle-2 i g \sqrt{N}\left\langle\hat{\sigma}^{x}\right\rangle, \\
& \partial_{+}\left\langle\hat{\sigma}^{x}\right\rangle=-\omega_{z}\left\langle\sigma^{y}\right\rangle, \\
& \partial_{+}\left\langle\hat{\sigma}^{y}\right\rangle=\omega_{z}\left\langle\sigma^{x}\right\rangle-\frac{2 g}{\sqrt{N}}\left\langle\left(\hat{a}+\hat{a}^{+}\right) \hat{\sigma}^{z}\right\rangle_{1} \tag{5}\\
& \partial_{+}\left\langle\hat{\sigma}^{z}\right\rangle=\frac{2 g}{\sqrt{N}}\left\langle\left(\hat{a}+\hat{a}^{+}\right) \hat{\sigma}^{y}\right\rangle,
\end{align*}
$$

with $\left\langle\hat{\sigma}^{\alpha}\right\rangle \equiv\left\langle\hat{S}^{\alpha}\right\rangle / N \equiv s^{\alpha}$. $\langle\hat{a}\rangle \equiv \alpha$.
Ex: Derive it.
We note that the system of equations (5) is not dosed: on top of the 1 point functions. it also contains 2 -point tinettons. If we now derived the equations governing the dynamics of the 2-point wosrelators, they would clearly include 3-point frictions, ate. The result is an infinite hierarchy of differential equations. cf. BBGKY. One way to close it, is to truncate the correlation thuctions at a certain order. For instance, to lowest order, $\left\langle\hat{a} \hat{\sigma}^{\alpha}\right\rangle \simeq\langle\hat{a}\rangle\left\langle\hat{\sigma}^{\alpha}\right\rangle$, which yields the mean-tield approximation:

$$
\begin{align*}
& \partial+\alpha=-\left(i \omega_{c}+k\right) \alpha-2 i g \sqrt{N} s^{x} \\
& \partial_{+} s^{x}=-\omega_{z} s_{1} \\
& \partial_{+} s^{r}=\omega_{z} s^{k}-\frac{2 g}{\sqrt{N}}\left(\alpha+\alpha^{*}\right) s^{z} . \tag{6}\\
& \partial_{+} s^{z}=\frac{2 g}{\sqrt{N}}\left(\alpha+\alpha^{*}\right) s^{\gamma} .
\end{align*}
$$

The corresponding steady-state solution is given by

$$
\begin{equation*}
s_{*}^{x}= \pm \sqrt{1 / 4-\left(s_{*}^{2}\right)^{2}}, \quad s_{*}^{y}=0, \quad s_{*}^{z}=-\omega_{z} \frac{\omega_{c}^{2}+k^{2}}{8 g^{2} \omega_{c}}, \quad \alpha_{*}=-\frac{2 g \sqrt{N}}{\omega_{c}-i k} s_{*}^{x} \tag{7}
\end{equation*}
$$

Using the condition $\left|\alpha_{x}\right|>0$ for $g>g_{e}$, we easily find

$$
\begin{equation*}
g_{c}^{\mu c}=\frac{1}{2} \sqrt{\frac{\left(\omega_{z} \mid\left(\omega^{2}+c^{2}\right)\right.}{\omega_{c}}} \tag{8}
\end{equation*}
$$

Note that the condition $\left\langle\hat{a} \hat{\sigma}^{\alpha}\right\rangle \simeq\langle\hat{a}\rangle\left\langle\hat{\sigma}^{\alpha}\right\rangle \Leftrightarrow\left\langle\hat{a} \hat{\sigma}^{\alpha}\right\rangle_{c} \approx 0$, so the approx:matron was in fact neglecting connected two-point correlation functions. Extending upon this idea we might have instead truncated ait a higher order. This approximation achene is unown as the cuminlant expansion, for obvious reasons.

Though very straightforward, this approach is non-conserving and suptiers from secularity problems. Thus, at a certain point, it is bound to tail.

Q: Note, however, that the mean-tield approximation is conserving. Could you guess why?

Spin degrees of freedom and the path integral
As has been argued throughout the course, a good candidate for a conserving and self-consistent description of the dynamics of a nomequilibrium quantum system is given by the 2PI formalism. To use it, we first need to transform our Dicue Hamitonlan into its appropriate Lagrangian counter part.

If might tael tempting to wore directly with the spin degrees of freedom using the spin coherent-state path integral formulation. Schematically, the latter has the form

$$
\begin{equation*}
z=\int D \bar{n} \delta\left(1-\vec{n}^{2}\right) e^{-S_{E}[\bar{n}]} \tag{9}
\end{equation*}
$$

where for simplicity we considered a single spin in Encidean space. Needless to say, the presence of the constraint $\bar{n}^{2}=1$ doesn't loon too appealing, especially herring usenequ! librium in mind. Of course, we could instead employ a parametrization that automatically tunes care of the constraint (\rightarrow Euler angles). but then the action would contain terms $\sim \cos \theta, \sin \theta$, etc., which is not very convenient for developing approximation schemes.

It is thus suggestive to map the original spin d.o.f. Onto some new auxiliary ones. There are many options on the market:

1) Jordan-Wiguer:

$$
\begin{equation*}
\hat{\sigma}_{i}^{ \pm}=\exp \left(\mp i \pi \sum_{j=1}^{i-1} \hat{c}_{j}^{+} \hat{c}_{j}\right) \hat{c}_{i}^{(1)}, \quad \hat{\sigma}_{i}^{2}=2 \hat{c}_{i}^{+} \hat{c}_{i}-\hat{I}, \tag{10}
\end{equation*}
$$

with approriate fermionic operators $\left\{\hat{c}_{i}^{*} \hat{c}_{j}\right\}=\delta_{i j},\left\{\hat{c}_{i}^{*}, \hat{c}_{j}^{j}\right\}=\left\{\hat{c}_{i}, \hat{c}_{j}\right\}=0$.
This map is only suitable in 10 .
2) Holstein - Primarott=

$$
\begin{equation*}
\hat{s}^{2}=-N / 2+\hat{b}^{+} \hat{b}, \quad \hat{s}^{+}=\sqrt{N-\hat{b}^{+} \hat{b}^{\prime}} \hat{b}^{+}, \quad \hat{S}^{-}=\hat{b} \sqrt{N-\hat{b}^{+} \hat{b}^{\prime}}, \tag{11}
\end{equation*}
$$

with bosonic operators $[\hat{b}, \hat{b}]=1$.
This map is very nonlinear and thus forces one to do a $1 / \mathrm{N}$ expensia sea bebel from the very beginnig. A viable option for semiclassical compen. tations, but we can do "better".
3) Jordan-Schwinges:

$$
\begin{equation*}
\hat{\sigma}_{i}^{\alpha}=\frac{1}{2} \dot{b}_{i, s}^{*} \tau_{s s}^{\alpha} \tilde{b}_{i, s^{\prime}}, \quad s, s^{\prime} \in\{1,2\} \tag{12}
\end{equation*}
$$

with τ^{α} being the Pauli matrices and \hat{b}_{1}, \bar{b}_{2} being bosoulc annihilation operators.

The map is now only bilinear, which is good. The sole) Casimis element is given by

$$
\begin{equation*}
\hat{\bar{\sigma}}^{2}=\frac{\dot{M}}{2}\left(\frac{\hat{M}_{2}}{2}+1\right) . \quad \hat{M}=\sum_{s} \hat{b}_{s}^{*} \hat{b}_{s} . \tag{13}
\end{equation*}
$$

Hence, to ensure the constraint, one must have $\dot{M} \equiv 1$ on the operator level (us also dynamically). While this somends doable, the condition suggests to adopt a different type of auxiliary d.o.f., for which the condition will be satisfied by constonetion.
4) Martin transformation (Majorana fermions):

$$
\begin{equation*}
\hat{\sigma}_{i}^{\alpha}=-\frac{i}{2} \varepsilon^{\alpha \beta \gamma} \hat{\eta}_{i}^{\alpha} \hat{\eta}_{i}^{\beta}, \quad\left\{\hat{\eta}_{i}^{\alpha}, \hat{\eta}_{j}^{\beta}\right\}=\delta_{i j} \delta^{\alpha \beta}, \quad \alpha, \beta, \gamma \in\{x, y, z\} . \tag{lin}
\end{equation*}
$$

Ex: Verity that $\left[\hat{\sigma}_{i}^{\alpha}, \hat{\sigma}_{j}^{p}\right]=i \delta_{i j} \varepsilon^{\alpha \beta \gamma} \hat{\sigma}_{i}^{\gamma}$ and $\hat{\bar{\sigma}}^{2}=3 / 4$.
2PI approach
Adopting the map (14) the Schwinger-keldysh action in the presence of photon losses takes the form:

$$
\begin{align*}
S= & \int_{c} d t\left[\frac{i}{2}\left(a^{*} \partial+a-a_{+} a^{*}\right)-\omega_{c} a^{*} a+\frac{i}{2} \sum_{i}\left(\eta_{i}^{\alpha} \partial+\eta_{i}^{*}+2 \omega_{z} \eta_{i}^{*} \eta_{i}^{\eta}\right)+\right. \\
& \left.+\frac{2 i a}{\sqrt{N}}\left(a+a^{*}\right) \sum_{i} \eta_{i}^{\gamma} \eta_{i}^{2}\right]-i k \int d t\left(2 a_{+} a_{-}^{*}-a_{+}^{*} a_{+}-a^{*} a_{-}\right) \tag{15}
\end{align*}
$$

Since the interaction term depends an the photon field only through the combination $\hat{a}^{+} \hat{a}^{+}$, it is convenient to introduce

$$
\begin{equation*}
\hat{a}=\sqrt{\frac{\omega_{c}}{2}}\left(\hat{\phi}+i \hat{\pi} / \omega_{c}\right) \rightarrow \quad \hat{\phi}=\frac{1}{\sqrt{2 \omega_{c}}}(\hat{a}+\hat{a}+)_{1} \quad \hat{\pi}=-i \sqrt{\omega_{c} / 2}\left(\hat{a}-\hat{a}^{+}\right) . \tag{18}
\end{equation*}
$$ to wit

$$
\begin{align*}
S & =\int_{c} d t\left[\frac{1}{2}\left(\pi \partial_{+} \phi-\phi \partial_{4} \pi\right)-\frac{1}{2}\left(\omega_{c}^{2} \phi^{2}+\pi^{2}\right)+\frac{i}{2} \sum\left(\eta_{i}^{\alpha} \partial_{t} \eta_{i}^{\alpha}+2 \omega_{z} \eta_{i}^{x} \eta_{i}^{y}\right)+i \tilde{g} \phi \sum \sum_{i}^{\sum} \eta_{i}^{y} \eta_{i}^{z}\right. \\
& -i k \omega_{c} \rho d t\left[\phi+\phi_{-}+i \phi_{+} \pi-1 \omega_{c}-i \phi-\pi_{+} / \omega_{c}+\pi_{4} \pi-1 \omega_{c}^{2}-\frac{1}{2}\left(\phi_{+}^{2}+\pi_{-}^{2} / \omega_{c}^{2}+\phi_{-}^{2}+\pi_{-}^{2} / \omega_{c}^{2}\right)\right]_{1} \tag{17}
\end{align*}
$$

where $\tilde{g}=\sqrt{8 \omega_{c} / N} g$.

The 2PI effective action tares the usual form

$$
\begin{equation*}
\Gamma=S+\frac{i}{2} T_{r} \ln D^{-1}+\frac{i}{2} T_{r} D_{0}^{-1} D-\frac{i}{2} T_{r} \ln G^{-1}-\frac{i}{2} T_{r} G_{0}^{-1} G^{2}+\Gamma_{2} \tag{18}
\end{equation*}
$$

photon propagator
with $\Gamma_{2}=-i \ln \left\langle e^{i \operatorname{sint}}\right\rangle_{\text {zpI }}$ being the sum of all the 2PI (w.r.t. dressed propagators) connected vacuum diagrams.

The quantum equations of motion tare the form

$$
\begin{align*}
& \frac{\delta S}{\delta \phi_{a}(t)}-\frac{i}{2} \frac{\delta T_{r}\left[C_{0}^{-1}(\phi) C\right]}{\delta \phi_{a}(t)}+\frac{\delta r_{2}}{\delta \phi_{a}(t)}=0, \tag{isa}\\
& {\left[\left(D_{0}^{-1}-\Sigma\right) \circ D\right]_{a b}\left(t, t^{\prime}\right)=\delta_{a b} \delta\left(t-t^{\prime}\right)} \tag{19b}\\
& {\left[\left(G_{0}^{-1}-\Pi\right) \circ G_{1}\right]_{a b, i j}^{\alpha \beta}\left(t, t^{\prime}\right)=\delta_{a b} \delta_{i j} \delta^{\alpha \beta} \delta\left(t-t^{\prime}\right) .} \tag{19c}
\end{align*}
$$

One can proceed working either in the original \pm-basis or perform the Keldysh rotation,

$$
\binom{O_{+}}{O_{-}}=\left(\begin{array}{cc}
1 & 1 / 2 \tag{20}\\
1 & -1 / 2
\end{array}\right)\binom{O_{a 1}}{O_{q}}
$$

In Keldysh basis, the Dyson equations read

$$
\begin{align*}
& \partial+D_{c i q}^{+4}-D_{a q}^{\pi+4}+K D_{a q}^{++4}=0 . \\
& \partial+D_{\text {aq }}^{+\pi}-D_{\text {cit }}^{\pi \pi}+k D_{\text {cit }}^{+\pi}=i \mathbb{1} \text {, } \\
& \partial+D_{c q}^{\pi q}+\omega_{c}^{2} D_{c q}^{\phi \pi}+k D_{c i q}^{\pi q}+i \sum_{q i}^{t q} 0 D_{c i q}^{d q}=i \mathbb{I} \text {, } \\
& \partial+D_{\mathrm{cq}}^{\pi \pi}+\omega_{c}^{2} D_{a q}^{\phi \pi}+k D_{i k q}^{\pi \pi}+i \sum_{q^{-1}}^{+4} \cdot D_{a q}^{\pi \pi}=0_{1}
\end{align*}
$$

$$
\begin{align*}
& \partial_{+} D_{\text {ciao }}^{4 \pi}-D_{\text {cia }}^{\pi \pi}+K D_{\text {anal }}^{4 \pi}-i \frac{k}{\omega_{c}} D_{q a i}^{\pi \pi}=O \text {, } \\
& \partial+D_{\text {cia }}^{\pi 4}+\omega_{c}^{2} D_{\text {ac }}^{44}+k D_{\text {ali }}^{\pi 4}+i k \omega_{c} D_{q_{1}}^{44}+i \sum_{94}^{44} \circ D_{\text {ck }}^{44}+i \sum_{99}^{44} \circ D_{9 a}^{44}=0 \\
& \partial+D_{c i a}^{\pi \pi}+\omega_{c}^{2} D_{a i a}^{4 \pi}-k D_{i a l}^{\pi \pi}+i v_{c} \omega_{c} D_{q 9}^{\phi \pi}+i \sum_{q 91}^{44} \circ D_{c i a}^{\$ \pi}+i \sum_{q 9}^{44} \circ D_{q a}^{4 \pi}=0,
\end{align*}
$$

$+(z i a)$ with $a i q \leftrightarrow q d$ and $k \rightarrow-k$.
Here, o denotes temporal convolution, $(f \circ g)\left(t, t^{\prime}\right)=\rho d t^{\prime \prime} f\left(t, t^{\prime \prime}\right) g\left(t^{\prime \prime}, t^{\prime}\right)$, and Σ is the proper salf-energy:

$$
\begin{equation*}
\sum_{a b}^{\alpha \beta}\left(t, t^{\prime}\right)=2: \frac{\delta \Gamma_{2}}{\delta D_{a b}^{\alpha \beta}\left(t, t^{\prime}\right)} \tag{22}
\end{equation*}
$$

Weill derive one of the equations and leave the rest as an exercise. In matrix notation, one of the Dyson equations read:

$$
\begin{align*}
& +\left(\begin{array}{ccc}
\left(D_{0}^{-1}\right)_{99}^{+4} & -\sum_{99}^{4+} & 0 \\
0 & & \left(D_{0}^{-1}\right)_{q 9}^{\pi \pi}
\end{array}\right) \circ\left(\begin{array}{cc}
D_{q+1}^{\$ \phi} & D_{q 4}^{4 \pi} \\
D_{q 91}^{\pi+} & D_{99}^{\pi \pi}
\end{array}\right)=0 . \tag{23}
\end{align*}
$$

For instance, the $\phi \phi-e n t r y$ then yields

The relevant inverse bare propagators, $D_{0}^{1}=-i S^{(2)}$, read

$$
\begin{equation*}
\left(D_{0}^{-1}\right)_{q^{-1}}^{\phi \phi}=i \omega_{c}^{2} \delta\left(t-t^{\prime}\right),\left(D_{0}^{-1}\right)_{q a}^{+\pi}=i \delta\left(t-t^{\prime}\right)\left(\partial t^{\prime}+k\right),\left(D_{0}^{-1}\right)_{q q}^{d 4}=k \omega_{c} \delta\left(t-t^{\prime}\right) \tag{25}
\end{equation*}
$$

Ex: Show it.
Putting everything together we and up with

$$
\begin{align*}
& \partial_{t} D_{a d i}^{\pi+1}\left(t, t^{\prime}\right)=-\omega_{c}^{2} D_{c i a l}^{+t}\left(t, t^{\prime}\right)-k D_{c i a l}^{\pi d}\left(t, t^{\prime}\right)+i k_{c} \omega_{c} D_{q^{d i}}^{+d}\left(t, t^{\prime}\right)- \\
& -i \int d t^{\prime \prime} \sum_{q a i}^{+\phi}\left(t, t^{\prime \prime}\right) D_{\text {cici }}^{+\alpha}\left(t^{\prime \prime}, t^{\prime}\right)-i \int d t^{\prime \prime} \sum_{9 q}^{4 \phi}\left(t, t^{\prime \prime}\right) D_{q^{a i}}^{9+}\left(t^{\prime \prime}, t^{\prime}\right) \text {. } \tag{26}
\end{align*}
$$

Since retarded and advanced propagators are not independent of each of er, one sometimes instead with a linear combination thereof,

$$
\begin{equation*}
\operatorname{Daq}\left(t, t^{\prime}\right)=-i \rho\left(t, t^{\prime}\right) \theta\left(t-t^{\prime}\right), \quad D_{q a i}\left(t, t^{\prime}\right)=i \rho\left(t, t^{\prime}\right) \theta\left(t^{\prime}-t\right) \text {. } \tag{27}
\end{equation*}
$$

known as the spectral function $\rho=:$ (Dag- Dqai). Likewise.

$$
\begin{align*}
& \sum_{c_{q}}\left(t, t^{\prime}\right)=-i \Sigma^{(0)}(t) \delta\left(t-t^{\prime}\right)+i \Sigma_{g}\left(t, t^{\prime}\right) \theta\left(t^{\prime}-t\right)_{1} \\
& \Sigma_{q a 1}\left(t, N^{\prime}\right)=-i \Sigma^{(0)}(t) \delta\left(t-t^{\prime}\right)-i \Sigma_{g}\left(t, t^{\prime}\right) \theta\left(t-t^{\prime}\right), \tag{27}
\end{align*}
$$

so that

$$
\begin{align*}
\partial_{t} F^{\pi+4}\left(t, t^{\prime}\right)= & -\Omega^{2}(t) F^{\phi \phi}\left(t, t^{\prime}\right)-k F^{\pi+}\left(t, t^{\prime}\right)-k \omega_{c} \rho^{\phi \phi}\left(t, t^{\prime}\right) \theta\left(t^{\prime}-t\right)- \\
& -\int_{t_{0}}^{t} d t^{\prime \prime} \sum_{\rho}^{\phi \phi}\left(t, t^{\prime \prime}\right) F^{4 \phi}\left(t^{\prime \prime}, t^{\prime}\right)+\int_{t_{0}}^{i^{\prime}} d t^{\prime \prime} \sum_{F}^{\phi \phi}\left(t, t^{\prime \prime}\right) \rho^{+4}\left(t^{\prime \prime}, t^{\prime}\right), \tag{28}
\end{align*}
$$

with $F \equiv$ Dial, $\sum_{F} \equiv \sum_{q q}$, and $\Omega^{2}(t)=\omega_{c}^{2}+\Sigma_{\phi \phi}^{c o s}(t)$.
Remark: the keldysh propagator Dak is sometimes referred to as the statistical friction in the literature.

Analogously, the Majorana equations are

$$
\begin{align*}
& \left(\delta^{\alpha \gamma} \partial t+i m^{\alpha \gamma}\right) G_{q a, i j}^{\gamma \beta}\left(t, t^{\prime}\right)-\prod_{a q, i k}^{\alpha \gamma} \circ G_{q \beta, u_{j}}^{\gamma \beta}=\delta^{\alpha \beta} \delta_{i j}\left(t-t^{i}\right) \text {. } \\
& \left.\left(\delta^{\alpha \gamma} \partial t+i m^{\alpha \gamma}\right) C_{a q, i j}^{\gamma \beta}(t, t)-\prod_{q \alpha, i k}^{\alpha \gamma} \cdot G_{a q, \alpha_{j}}^{\gamma \beta}=g^{\alpha \beta} \delta_{i j}(t-t)\right) \text {. } \tag{zs}\\
& \left(\delta^{\alpha \gamma} \partial_{t}+i m^{\alpha \gamma}\right) G_{a i a, i j}^{\gamma p}\left(t, t^{\prime}\right)-\prod_{q, i, i k}^{\alpha \gamma} \circ G_{\text {cial,kj }}^{\gamma \beta}-\prod_{q q, i \leqslant}^{\alpha \gamma} \circ G_{q a, k_{j}}^{\gamma \beta}=0 .
\end{align*}
$$

with

$$
\operatorname{im}^{\alpha \beta}=\left(\begin{array}{ccc}
0 & \omega_{2} & 0 \\
-\omega_{2} & 0 & \tilde{g} \phi \\
0 & -\tilde{g} \phi & 0
\end{array}\right), \quad \prod_{\alpha b_{i j}}^{\alpha \beta}\left(t_{1} f^{\prime}\right)=-2 i \frac{\delta r_{2}}{\delta G_{b a, j i}^{\beta \alpha}\left(t_{i}^{\prime} t\right)} .
$$

Note that action (15) is invariant under the gauge \mathbb{Z}_{2} symmetry

$$
\left(\begin{array}{l}
y_{i}^{x}(t) \\
\eta_{i}^{y}(t) \\
y_{i}^{2}(t)
\end{array}\right) \longrightarrow\left(\begin{array}{l}
-\eta_{i}^{k}(t) \\
-\eta_{i}^{y}(t) \\
-\eta_{i}^{z}(t)
\end{array}\right),
$$

which implies $C_{i j}^{\alpha \beta}\left(t, t^{\prime}\right)=\delta_{i j} C^{\alpha \beta}\left(t, t^{\prime}, i\right), \Pi_{i j}^{\alpha \beta}\left(t, t^{\prime}\right)=\delta_{i j} \Pi^{\alpha \beta}\left(t, f^{\prime}, i\right)$. Assuming further homogeneity $G^{\alpha \beta}\left(t, t^{\prime}, i\right)=G^{\alpha \beta}(t, t)$, eta.

Finally, the equation yields the MF equation for the photon fields

$$
\begin{align*}
& \partial+\phi=\pi-k \phi . \tag{30}\\
& \partial+\pi=-\omega_{c}^{2} \phi-k \pi+i \tilde{g} N \overbrace{G_{\text {cia }}^{r}(t, t)}^{i s^{*}(t)} .
\end{align*}
$$

I/N expansion
To close the sat of Dyson (or Kadanof-Baym) equations, it is left to specify the approximation for the seff-energies Σ and M, or equivalently, for Γ_{2}. The most common expansion scheme is the familiar perturbative coupling expansion, which relies on the smallness of the coupling 9 .

However, the Dicue model otters an alternative, nouperturbative expansia parameter: YN. As we have already discussed, the bicue model actually describe a big spin of length N/2 interacting with photons. Therefore, physically, we expect flat at $N \rightarrow \infty$ the description becomes filly classcal, while quantum fluctuations should be completely suppressed (think of self-averaging).

Formally, this can be argued as follows. The first terms in (is) stem from the dassical action and thus scale extensively with the system size N.

What about r_{2} ? While the Kadanott-Baym equations ware derived in the Keldysh basis, it is more convenient to work with r_{2} on the Schwingor-keldysh contour (tower cuts of vertices and propagators \rightarrow tourer diagrams $>$ and simply decompose Σ at the last step. Introducing the diagrammatic notation,

$$
\begin{aligned}
D^{d t}\left(t, t^{\prime}\right)=\left\langle\mathcal{T}_{c} \hat{\phi}(t) \hat{\phi}\left(t^{\prime}\right)\right\rangle_{c} & =\sim \\
G_{i j}^{\alpha \beta}\left(t, t^{\prime}\right)=\left\langle\mathcal{T}_{c} \hat{\eta}_{:}^{\alpha}(t) \hat{\eta}_{j}\left(t^{\prime}\right)\right\rangle_{c} & =\text {. } \\
i \tilde{g} \rho_{c} d t & =
\end{aligned}
$$

the first contribution tares the form

Each vertex yields $Y /{ }_{N}$ and the trace adds an additional factor of $N \longrightarrow O\left(N^{\circ}\right)$.

In tact, this is the only next-to-leading order (NLO) diagram in the Dicue model.

Ex: Show that at NNLO, there are two diagrams

Salt energies at NLO in $1 / N$
The analytic expression for $\Gamma_{2}^{N L O}$ reads

$$
\begin{align*}
\Gamma_{2}^{N L 0} & =-\frac{1}{2} \tilde{g}^{2} \sum_{i, j} \int_{c} d t\left\langle\phi(t) \phi\left(t^{\prime}\right) \eta_{i}^{Y(t)} \eta_{i}^{7} t^{7} \eta_{j}^{Y}\left(t^{\prime}\right) \eta_{j}^{z}\left(t^{\prime}\right)\right\rangle_{2 P I}= \tag{31}\\
& =-\frac{1}{2} \tilde{g}^{2} \sum_{i, j} \int_{c} d t D^{\phi \phi}\left(t, t^{\prime}\right)\left[G_{i j}^{y z}\left(t, t^{\prime}\right) G_{i j}^{2 y}\left(t, t^{\prime}\right)-G_{1 j}^{Y y}\left(t, t^{\prime}\right\rangle G_{i j}^{27}\left(t, t^{\prime}\right)\right] .
\end{align*}
$$

Hence, the NLO photon self-energy is

$$
\begin{equation*}
\sum^{\phi \phi}\left(t, t^{\prime}\right)=N \tilde{g}^{2}\left[G^{y z}\left(t, t^{\prime}\right) G^{2 y}\left(t, t^{\prime}\right)-G^{y y}\left(t, t^{\prime}\right) G^{27}\left(t, t^{\prime}\right)\right] \tag{32}
\end{equation*}
$$

Likewise, e.9.,

$$
\begin{equation*}
\Pi^{r y}\left(t, t^{\prime}\right)=-\tilde{g}^{2} D^{++}\left(t, t^{\prime}\right) C^{z z}\left(t, t^{\prime}\right) \tag{33}
\end{equation*}
$$

Ex: Derive the rest.

If you poefer working with F and 3, here's a neat trick to decompose Σ. The causal structure of the propagators can be summarized as

$$
D\left(t, t^{\prime}\right)=F\left(t, t^{\prime}\right)-\frac{i}{2} \rho\left(t, t^{\prime}\right) \operatorname{sgu_{c}}\left(t-t^{\prime}\right) .
$$

and likewise for G. Similarly,

$$
\begin{equation*}
\sum\left(t, t^{\prime}\right)=-i \sum^{(0)}(t) \delta\left(t-t^{\prime}\right)+\sum_{F}\left(t, t^{\prime}\right)-\frac{1}{2} \Sigma_{\rho}\left(t, t^{\prime}\right) \operatorname{sqn} c\left(t-t^{\prime}\right), \tag{35}
\end{equation*}
$$

and same for Π.
Now it's very simple to decompose the selt-energies. For instance,

$$
\begin{aligned}
& \sum_{f}^{\$ 4}\left(t, t^{\prime}\right)=N \tilde{g}^{2}\left[F_{f}^{y z}\left(t, t^{\prime}\right) F_{f}^{z y}\left(t, t^{\prime}\right)-\frac{1}{4} \rho_{f}^{y z}\left(t, t^{\prime}\right) \rho_{f}^{z y}\left(t, t^{\prime}\right)-F_{f}^{y y}\left(t, t^{\prime}\right) F_{f}^{z z}\left(t, t^{\prime}\right)+\frac{1}{4} \rho_{f}^{y y}\left(t, t^{\prime}\right) \rho_{f}^{z z}\left(t, t^{\prime}\right)\right], \\
& \sum_{\rho}^{\$ 4}\left(t, t^{\prime}\right)=N \tilde{g}^{2}\left[\rho_{f}^{y z}\left(t, t^{\prime}\right) F_{f}^{z y}\left(t, t^{\prime}\right)+F_{f}^{y z}\left(t, t^{\prime}\right) \rho_{f}^{z y}\left(t, t^{\prime}\right)-\rho_{f}^{y y}\left(t, t^{\prime}\right) F_{f}^{z z}\left(t, t^{\prime}\right)-F_{f}^{y y}\left(t, t^{\prime}\right) \rho_{f}^{z z}\left(t, t^{\prime}\right)\right] .
\end{aligned}
$$

Some details regarding numerical implementation
It goes without saying that the kadanott-Baym equations, being a set of coupled nonlinear partial integro-ditterential equations, are way too hard to solve analytically, and ane has to resort to numerical methods.

Before we proceed, note that the propagators are punetsons of two time arguments: t and t '. Therefore, to cover the whole time domain, wa need to be able to propagate along the t '-direction as well. This can be achieved by considering the 'dual Dyson equations:

$$
\begin{align*}
& {\left[D \circ\left(D_{0}^{-1}-\sum\right)\right]_{a b}\left(t, t^{\prime}\right)=\delta_{a b} \delta\left(t-t^{\prime}\right)} \tag{37a}\\
& {\left[G \circ\left(G_{0}^{-1}-\Pi\right)\right]_{a b, i j}^{\alpha \beta}\left(t, t^{\prime}\right)=\delta_{a b} \delta_{i j} \delta^{\alpha \beta} \delta\left(t-t^{\prime}\right) .} \tag{37b}
\end{align*}
$$

On the other hand, using the symmedry properties

$$
\begin{array}{lll}
F^{\alpha \beta}\left(t, t^{\prime}\right)=F^{\alpha}\left(t, t^{\prime}\right), & g^{\alpha \beta}\left(t, t^{\prime}\right)=-\rho^{\beta \alpha}\left(t^{\prime}, t\right), & \text { (bosons) } \tag{38}\\
F_{f}^{\alpha \beta}\left(t, t^{\prime}\right)=-F_{f}^{\beta \alpha}\left(t, t^{\prime}\right), & \rho_{f}^{\alpha \beta}\left(t, t^{\prime}\right)=\rho^{\beta \alpha}\left(t^{\prime}, t\right), & \text { (fermions), }
\end{array}
$$

we can propagate equations along the t axis and then reflect the result using (38).

The only missing ingredient in the above scheme is propagation along the diagonal. Introducing the notation.

$$
\begin{equation*}
\left.d t f(t, t) \equiv\left(\partial t+\partial t^{\prime}\right) f\left(t, t^{\prime}\right)\right|_{t=t^{\prime}} \tag{39}
\end{equation*}
$$

one finds, for instance,

$$
\begin{align*}
& d t F^{\pi \phi}(t, t)=F^{\pi \pi}(t, t)-\Omega^{2}(t) F^{4 \phi}(t, t)-2 k F^{\pi \phi}(t, t)-\int_{t_{0}}^{t} d t^{\prime \prime}\left[\sum_{\rho}^{+\phi}\left(t, t^{\prime \prime}\right) F^{+\phi}\left(t^{\prime \prime}, t^{\prime}\right)-\sum_{F}^{\infty \phi}\left(t, t^{\prime \prime}\right) \rho^{\phi d}\left(t^{4}, t\right)\right] \tag{40}\\
& \left.\partial_{t} F^{\pi \phi}\left(t, t^{\prime}\right)\right|_{+=t^{\prime}}+\left.\partial_{t^{\prime}} F^{\pi \phi}\left(t, t^{\prime}\right)\right|_{+=t^{+}}=\left.\partial_{t}\left[F^{\pi \phi}\left(t, t^{\prime}\right)+F^{4 \pi}\left(t, t^{\prime}\right)\right]\right|_{+=t^{\prime}}
\end{align*}
$$

and
"quantum $1 / 2 "$

$$
\begin{equation*}
d_{t} F^{\phi \phi}(t, t)=2\left[F^{\phi \pi}(t, t)-k\left(F^{* \alpha}(t, t)-\frac{1}{2 \omega_{2}}\right)\right] . \tag{41}
\end{equation*}
$$

The spectral components, on the other hand, remain unchanged on the diagonal:

$$
\begin{equation*}
\rho^{\pi \phi}(t, t)=-\rho^{4 \pi}(t, t)=-1, \quad \rho_{f}^{\alpha \beta}(t, t)=i \delta^{\alpha \beta}, \tag{42}
\end{equation*}
$$

and follow from the (ait) commutation relations for bosons (fermions).
Remark: One may show that
$F^{\alpha \beta}\left(t, t^{\prime}\right)=\frac{1}{2}\left\langle\left\{\dot{\phi}^{\alpha}(t), \dot{\phi}^{\beta}\left(t^{\prime}\right)\right\}\right\rangle-\left\langle\dot{\phi}^{\alpha}(t)\right\rangle\left\langle\hat{\phi}^{\beta}\left(t^{\prime}\right)\right\rangle, \rho^{\alpha \beta}\left(t, t^{\prime}\right)=i\left\langle\left[\hat{\phi}^{\alpha}(t), \bar{\phi}^{\beta}\left(t^{\prime}\right)\right]\right\rangle$, (bosons)

$$
F_{f}^{\alpha \beta}\left(t, t^{\prime}\right)=\frac{1}{2}\left\langle\left[\hat{\eta}^{\alpha}(t), \hat{y}^{\beta}\left(t^{\prime}\right)\right]\right\rangle, \quad \rho_{f^{\alpha}}^{\alpha}\left(t, t^{\prime}\right)=i\left\langle\left\{\hat{y}^{\alpha}(t), \hat{y}^{\beta}\left(t^{\prime}\right)\right\}\right) .
$$

(fermions)
and $\quad d_{t} S_{(\rho)}^{\alpha \beta}=0$.
To summarize, one can sketch the following scheme:

What is the numerical cost of solving the 2 PI equations? Well. suppose we want to propagate an equation along t at fired (t, t^{\prime}). Due to ummerical integ. ration on the RHS this requires $O(t)$ operations. Going through each t from 0 to t manes it $O\left(t^{2}\right\rangle$. Finally, there are N_{t} steps line this, so the conputattonal cost is $\sum_{t=0}^{N_{s}} O\left(t^{2}\right)=O\left(N_{l}^{3}\right)$. So the Kadanott-Bayu complexity
scales cubically with the umber of timesteps. Obviously, the memory costs, however, scales quadratically with the umber of timesteps.

What schemes can one use? In order not to lose the self-cosistency of $2 P I$, it is vary advisable to use implicit method. In practice, ana normally adopts the pedictor-corrector approach for that and iterates until the desired convergence is reached. Of course, one can use any sensible solver combinations for this. Suppose, however, we compente the memory integrals on the RHS using the simple trapezoidal rule. The error is then $O\left(\Delta t^{2}\right)$ moving using fancy higher-order schemes essentially meaningless. The most commonly used scheme in this case is the so-called implicit Hen's method:

$$
\begin{aligned}
& y^{\prime}(t)=f\left(t_{1} y(t)\right), \quad y\left(t_{0}\right)=y_{0} \leftrightarrow y_{i=1}^{(0)}=y_{i}+\Delta t \cdot f\left(t_{i}, y_{i}\right), \quad \text { (predictor) } \\
& y_{i=1}^{(n+1)}=y_{i}+\frac{\Delta t}{2}\left[f\left(t_{i} y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{(u)}\right)\right] . \text { (corrector) }
\end{aligned}
$$

More sophisticated approaches may involve having an adaptive grid, using higher-- order schemes, etc. In addition, one may consider approximations on the level of the Vadanoff-Baym equations themselves. The most prominent ones are (a) employing the so-called generalized Kadanoft-Baym ansatz and (b) memory truncation ($\int_{0}^{t} d t \sim \rho_{t-t m n e}^{t}$). A good pedagogical read on the subject with some references is, e.g.1 arx:V:2110.04793.

To get some feeling, a typical numerical run for the Dicke model with $N_{t}=250$ timesteps tares about ~ 1 minute on a single thread.

Remark: In the class presentation, the ummerical tolerances were set too low, which affected the performance without munch accuracy gain. The lesson is: play with yous unmbers to find the right balance!

