Validity of Born-Markov approximation

e
| atom interacting with quantized radiation field Markov approximation
W ‘|“‘mm“mm"mh’. | (inverse) atomic radiative lifetimes ~ 107 7s™ ( ~ 731 >
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When does Markov approximation fail? I, : : [y atomic decay rate Q
t~Llic> 1/1 l

large propagation time (delay effects!)

another example: spin coupled to bosonic bath (H; = ga'c™+h.c.)

it bosons have long lifetime (spectral function like a delta Dirac) the system performs several coherent oscillations (revivals): Q
breakdown of Markov bath approximation




Examples & Exercises

Decay of a two-level system
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HOWTO SOLVE Your exercise
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],and plug into Lindblad equation Hg = 50)003 with jJump operator L = o,

write generic ansatz. p = [

this problem is equivalent to H¢ + h(f)o,

a(t) ~ exp(—yt/2) > 0  p(t — o00) ~ 1/2(1 = 1/2N + 1)) where h(?) is Gaussian delta correlated noise ||

explore literature to find proof of this statement
whenT=0—->N=0andp =0 no(fopulahon in the excited state, all lost via and convince yourself that in this case the only possible
emission || look also at the rates in Lindblad equation)

steady state is p o 1




Examples & Exercises

Damped harmonic oscillator
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there exists an Heisenberg evolution for operators in Lindblad dynamics (— derivation in (3.84 of Breuer)):

%AH(t) = 41wy [aTa, AH(t)]

+v (N + 1) {afAH(t)a — %aTaAH(t) — %AH(t)aTa}

+voN {aAH(t)af - %aaTAH(t) — %AH(t)aat} :

using bosonic commutation relations:

aH(t) — e(—iwo—70/2)ta, (a(t)) — tr {aH(t)PS(O)} — (a(0)>e(—iw0-70/2)t

t (t) = p(Tiwo—70/2)t >

)

(a'a),, (t) = e"™'a’a + N (1 — e~ %)

(a'a(t)) = tr {(a%a), (t)ps(0)} = (ala(0))e 7! + N (1 — e~ t)

Your exercises

* solve the same exercise focusing on the dynamics
of p(t) and not of observables

e solve the same exercise with:
H = e(a + a") (coherent pump)

OR with L = a(incoherent pump)

and comment on the results




Structure and symmetries of Lindblad equation

Lindblad operators (S + B, Hs ® Hp, p)

encode dissipative channels
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Structure and symmetries of Lindblad equation

Lindblad operators
7 ~ encode dissipative channels (S + B, %S ® %B, p)
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Structure and symmetries of Lindblad equation

Lindblad operators

//encode dissipative channels
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— conservation of probability: in general we have Tr(p) = 1, and Lindblad dynamics preserve it: 0, Tr(p) = 0

question: is purity preserved?

— symmetries: consider the specific case of H; = Z gﬂaTbﬂ + h.c. with Hg = a'a and Hy = Z a)ﬂbgbﬂ
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the total number of particles N = N, + N is conserved, but individually N, and Ng aren't, and, when the environment is traced out

in order to derive the Lindblad equation, no symmetry is left (no individual number particle conservation)

— nevertheless, notice that the jJump operator L = a has the interesting property that the whole Liouvillian is symmetric under a = — a

this Is called a weak symmetry of the Liouvillian and it does not entail any conservation law




