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1.9 Solving the Boltzmann Equation

Solve numerically the Boltzmann equation for the dark matter (DM) number density n
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corresponding to the case of 2-to-2 DM annihilations into standard model (SM) states. As-
sume 7) a Universe dominated by SM radiation, ii) conservation of the SM entropy, and i)
an s-wave (i.e. constant) thermally-averaged annihilation cross section (ov).

Hints:

1. 4) implies that the Hubble expansion rate as a function of the SM temperature T is

H(T) = (1.16)

with the SM energy density is given by

7T2

pr(T) = 5 (1) T, (117)
Mp ~ 2.4x 108 GeV is the reduced Planck mass and g,(T) is the number of relativistic
degrees of freedom that contributes to the energy density of the SM. As a first approx-
imation, take, e.g. g, = 106.75. It is a good number for temperatures higher than the
top mass.

2. For the DM number density in equilibrium (without chemical potential), use the Maxwell-
Boltzmann approximation

g m
neq(T) = 525 m* T K (?) (1.18)

where m is the mass of the DM, ¢ is the number of internal degrees of freedom of the
DM particle, and K; the modified Bessel function of i order.

3. Given i) and i), Eq. (I.15) can be conveniently rewritten as

ay _ (ov)s

de  zH
where z = m/T, Y(T) = n(T)/s(T), and Yeq(T) = neq(T)/s(T), with

(V2 — (ve9)?], (1.19)

272 3
s(T) = ——9xs(T)T (1.20)
45
is the SM entropy density and g.s(7") the number of relativistic degrees of freedom
contributing to the DM entropy. Take g.s(T") = g«(T'), which is a good approximation
for temperatures higher than a few MeVs.
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10.

11.
12.
13.

14.

15.

. For wisely chosen values of m and (ov),'6 solve Eq. (I.19). Recall that observations of

the DM relic density require that at low temperatures (i.e. z > 100)
Y xm~4.3x1071% GeV. (1.21)

For the initial conditions (yes, a first-order differential equation requires an initial con-
dition!), take zini = 15 and Y (2ini) = Yeq(Zini). For a given DM mass, what is the
required value of {(ov)? Calculate {(ov) in GeV~2, picobarns, and cm?/s.

. How does the relic abundance (i.e. Y') evolves with an increase / decrease of (ov)?

. Play wildly with the initial conditions zj,; and Y (ziy;).

Repeat point 4 for other values of m, and plot (ov) versus m.

. Considering the simple parametrization

o’

= — 1.22
o0y =25, (122)
with « a dimensionless coupling, plot « versus m. What is the maximal WIMP DM

mass compatible with perturbativity?

. One can go one step forward and take into account the temperature dependence of g,

and g.s. Use the tabulated values of g, and g.s in the file Data/hgEff/DHS.thg of
MicrOMEGASs. In their notation heff = g,s while geff = g,. Plot again (ov) versus m
taking now into account the variation of g, and gs.

Decrease the (constant) value of (ov) without fear. Use the initial conditions zj,; = 107*
and Y (xj,i) = 0. Discover a second solution satisfying Eq. (I.21) and corresponding to
ultraviolet freeze-in (UV FIMP) paradigm. Why is this freeze-in mechanism called
ultraviolet?

How does the relic abundance (i.e. Y) evolves with an increase / decrease of (ov)?
Play wildly with the initial conditions ziy; and Y (Zini).
Plot (ov) versus m for UV FIMPs.

Repeat the WIMP analysis, now for DM semi-annihialtion (i.e. reactions DM + DM

— DM + SM)
ay _ (ov)s

dr Tz H

Y2 -YYed], (1.23)

Repeat the WIMP analysis, now for 3-to-2 SIMP DM self-annihilation (i.e. reactions
DM + DM + DM — DM + DM)

ay (0v*)3102 5% 113 2 e

16\Wisely means masses in the GeV to TeV ballpark and cross sections at the picobarn scale!
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16.

17.

18.

Considering the simple parametrization

OéS

<O'U2>3_t0_2 == ﬁ s (125)

with « a dimensionless coupling, plot « versus m. What is the maximal SIMP DM
mass compatible with perturbativity?

Forget assumptions i) and 7). Assume instead the existence of a long-lived non-
relativistic particle ¢ of mass mg, that only decays into SM particles with a total decay
width 'y corresponding to a lifetime 74 = 1/T'y ~ 1 s. The evolution of the number
density ng of ¢ and the SM radiation energy density pr can be track by the system of
coupled Boltzmann equations

d

%+3Hn:—1“¢n¢, (1.26)
d
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and the Friedmann equation

pR+m¢n¢
H=,|——F"77F— 1.28
Ve (1.28)

where py = mgng is the energy density of ¢. Rewrite Egs. (1.26), (1.27) and (I1.28)
in terms of the comoving quantities ® = ngy x a, R = pr x a*, and the cosmic scale
factor a. Solve numerically the new equations, looking for periods where ¢ dominates
the total energy density of the Universe. Extract the evolution of the SM temperature
using Eq. (I.17). Use the initial condition ajn; = 1 with pr(aini) = 0 and pg(aini) # 0 for
a reheating-like scenario or pr(aini) > pg(aini) > 0 and for an early matter domination
era. Recall that H(T) <2 x 107> Mp.

Rewrite Eq. (I.15) using N = n x a® and a. Solve it in the previously discussed back-
ground. Understand WIMPs during low-temperature reheating, and WIMPs during an
early matter dominated era.
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