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I.9 Solving the Boltzmann Equation

Solve numerically the Boltzmann equation for the dark matter (DM) number density n

dn

dt
+ 3H n = −⟨σv⟩

(
n2 − n2eq

)
, (I.15)

corresponding to the case of 2-to-2 DM annihilations into standard model (SM) states. As-
sume i) a Universe dominated by SM radiation, ii) conservation of the SM entropy, and iii)
an s-wave (i.e. constant) thermally-averaged annihilation cross section ⟨σv⟩.

Hints:

1. i) implies that the Hubble expansion rate as a function of the SM temperature T is

H(T ) =

√
ρR(T )

3MP
, (I.16)

with the SM energy density is given by

ρR(T ) =
π2

30
g⋆(T )T

4, (I.17)

MP ≃ 2.4×1018 GeV is the reduced Planck mass and g⋆(T ) is the number of relativistic
degrees of freedom that contributes to the energy density of the SM. As a first approx-
imation, take, e.g. g⋆ = 106.75. It is a good number for temperatures higher than the
top mass.

2. For the DM number density in equilibrium (without chemical potential), use the Maxwell-
Boltzmann approximation

neq(T ) =
g

2π2
m2 T K2

(m
T

)
, (I.18)

where m is the mass of the DM, g is the number of internal degrees of freedom of the
DM particle, and Ki the modified Bessel function of ith order.

3. Given i) and ii), Eq. (I.15) can be conveniently rewritten as

dY

dx
= −⟨σv⟩ s

xH

[
Y 2 − (Y eq)2

]
, (I.19)

where x ≡ m/T , Y (T ) ≡ n(T )/s(T ), and Yeq(T ) ≡ neq(T )/s(T ), with

s(T ) =
2π2

45
g⋆s(T )T

3 (I.20)

is the SM entropy density and g⋆s(T ) the number of relativistic degrees of freedom
contributing to the DM entropy. Take g⋆s(T ) = g⋆(T ), which is a good approximation
for temperatures higher than a few MeVs.
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4. For wisely chosen values of m and ⟨σv⟩,16 solve Eq. (I.19). Recall that observations of
the DM relic density require that at low temperatures (i.e. x≫ 100)

Y ×m ≃ 4.3× 10−10 GeV. (I.21)

For the initial conditions (yes, a first-order differential equation requires an initial con-
dition!), take xini = 15 and Y (xini) = Yeq(xini). For a given DM mass, what is the
required value of ⟨σv⟩? Calculate ⟨σv⟩ in GeV−2, picobarns, and cm3/s.

5. How does the relic abundance (i.e. Y ) evolves with an increase / decrease of ⟨σv⟩?

6. Play wildly with the initial conditions xini and Y (xini).

7. Repeat point 4 for other values of m, and plot ⟨σv⟩ versus m.

8. Considering the simple parametrization

⟨σv⟩ = α2

m2
, (I.22)

with α a dimensionless coupling, plot α versus m. What is the maximal WIMP DM
mass compatible with perturbativity?

9. One can go one step forward and take into account the temperature dependence of g⋆
and g⋆s. Use the tabulated values of g⋆ and g⋆s in the file Data/hgEff/DHS.thg of
MicrOMEGAs. In their notation heff = g⋆s while geff = g⋆. Plot again ⟨σv⟩ versus m
taking now into account the variation of g⋆ and g⋆s.

10. Decrease the (constant) value of ⟨σv⟩ without fear. Use the initial conditions xini = 10−1

and Y (xini) = 0. Discover a second solution satisfying Eq. (I.21) and corresponding to
ultraviolet freeze-in (UV FIMP) paradigm. Why is this freeze-in mechanism called
ultraviolet?

11. How does the relic abundance (i.e. Y ) evolves with an increase / decrease of ⟨σv⟩?

12. Play wildly with the initial conditions xini and Y (xini).

13. Plot ⟨σv⟩ versus m for UV FIMPs.

14. Repeat the WIMP analysis, now for DM semi-annihialtion (i.e. reactions DM + DM
→ DM + SM)

dY

dx
= −⟨σv⟩ s

xH

[
Y 2 − Y Y eq] . (I.23)

15. Repeat the WIMP analysis, now for 3-to-2 SIMP DM self-annihilation (i.e. reactions
DM + DM + DM → DM + DM)

dY

dx
= −⟨σv2⟩3-to-2 s

2

xH

[
Y 3 − Y 2 Y eq] . (I.24)

16Wisely means masses in the GeV to TeV ballpark and cross sections at the picobarn scale!
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16. Considering the simple parametrization

⟨σv2⟩3-to-2 =
α3

m5
, (I.25)

with α a dimensionless coupling, plot α versus m. What is the maximal SIMP DM
mass compatible with perturbativity?

17. Forget assumptions i) and ii). Assume instead the existence of a long-lived non-
relativistic particle ϕ of mass mϕ, that only decays into SM particles with a total decay
width Γϕ corresponding to a lifetime τϕ = 1/Γϕ ∼ 1 s. The evolution of the number
density nϕ of ϕ and the SM radiation energy density ρR can be track by the system of
coupled Boltzmann equations

dnϕ
dt

+ 3H n = −Γϕ nϕ , (I.26)

dρR
dt

+ 4H ρR = +Γϕ nϕmϕ , (I.27)

and the Friedmann equation

H =

√
ρR +mϕ nϕ

3MP
, (I.28)

where ρϕ = mϕ nϕ is the energy density of ϕ. Rewrite Eqs. (I.26), (I.27) and (I.28)
in terms of the comoving quantities Φ ≡ nϕ × a3, R ≡ ρR × a4, and the cosmic scale
factor a. Solve numerically the new equations, looking for periods where ϕ dominates
the total energy density of the Universe. Extract the evolution of the SM temperature
using Eq. (I.17). Use the initial condition aini = 1 with ρR(aini) = 0 and ρϕ(aini) ̸= 0 for
a reheating-like scenario or ρR(aini) ≫ ρϕ(aini) > 0 and for an early matter domination
era. Recall that H(T ) < 2× 10−5 MP .

18. Rewrite Eq. (I.15) using N ≡ n × a3 and a. Solve it in the previously discussed back-
ground. Understand WIMPs during low-temperature reheating, and WIMPs during an
early matter dominated era.
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