Poster flash talks

Thursday, June 11th

- Camila Belén Martínez (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEN-UBA)): Reconstruction of muon tracks in the South Atlantic Anomaly region
- Gustavo Alves (University Of Sao Paulo): Could SBND-PRISM probe Lepton Flavor Violation?
- Letícia Maria Valença Guedes (UFRN): Constraining Gamma-ray Lines from Dark Matter Annihilation
- Nicolás Avalos (Instituto Balseiro): The search for Dark Matter in DMSQUARE (Argentina) and CONNIE (Brazil)
- Walter Rodriguez (Pontificia Universidad Catolica del Peru): Non-pointing photons from Long-Lived Particles at the ATLAS ECal in the Dimension-5 Type-I Seesaw
- Javier Silva Malpartida (Pontifica Universidad Católica del Perú): From Wimps to Fimps with low reheating temperatures
- Edson da Silva Souza (UNICAMP): Alleviating the present tension between T2K and NOvA with neutrino New Physics at source

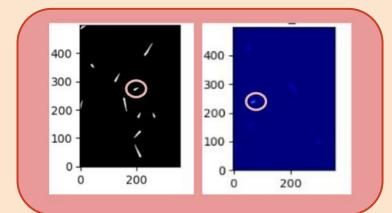
Reconstruction of muon tracks in the South Atlantic Anomaly region

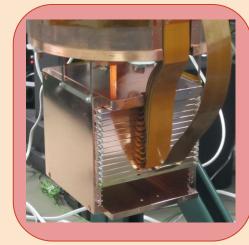
Camila Belén Martínez¹, Santiago Perez¹ ²

¹Department of Physics, FCEN, University of Buenos Aires, Argentina

² Fermi National Accelerator Laboratory, PO Box 500, Batavia IL, 60510, USA

for the CONNIE Collaboration




Selecting

&

filtering muons

Identifying muon coincidences as it goes through the stack

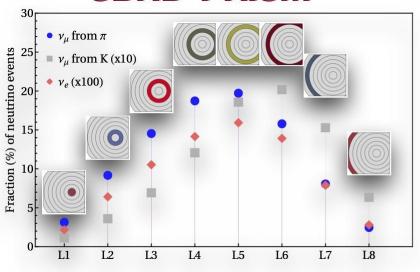
Applications:

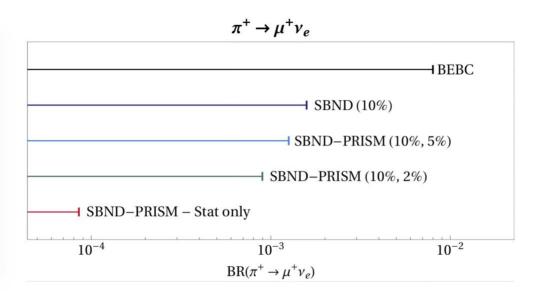
- Sensor calibration
- Dark Matter detection

Could SBND-PRISM probe Lepton Flavor Violation? ArXiv:2405.00777

Main Question

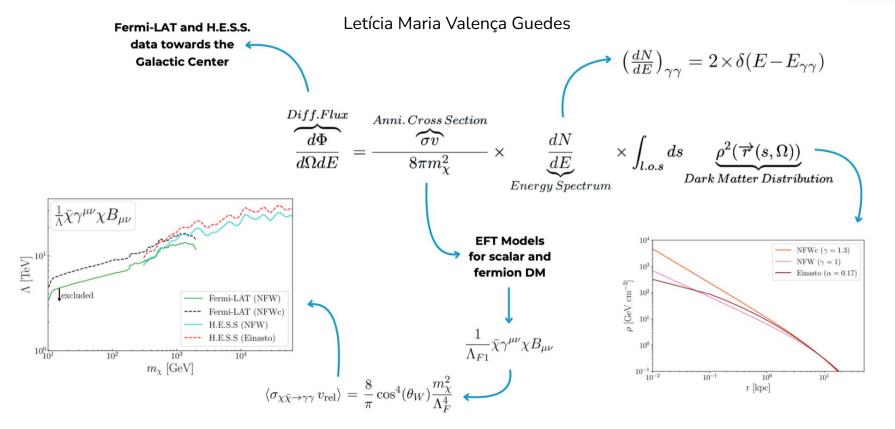
Can we probe lepton flavor violation with neutrinos beyond oscillations?


Main Idea


Neutrino experiments produce several neutrino events, this gives us information about the flavor composition at the source.

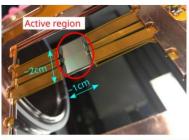
Caveat

Neutrinos oscillate and experiments are designed to probe this phenomenon which is intrinsically flavor violating and can mask LFV at source.


SBND-PRISM

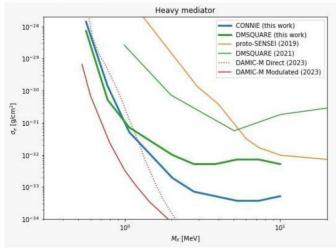
For more information see our paper:

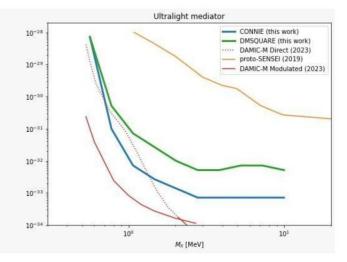
Constraining Gamma-ray Lines from Dark Matter Annihilation


The search for Dark Matter in DMSQUARE (Argentina) and CONNIE (Brazil)

Nicolás E. Avalos (nicolas.avalos@ib.edu.ar)

Instituto Balseiro (CNEA/UNCUYO) & CONICET

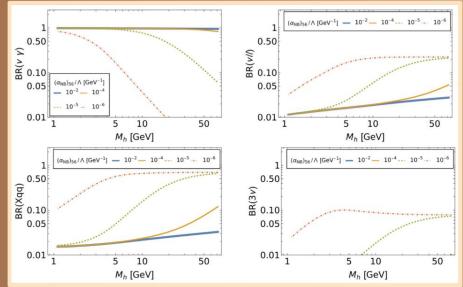



How do we search for Dark Matter?

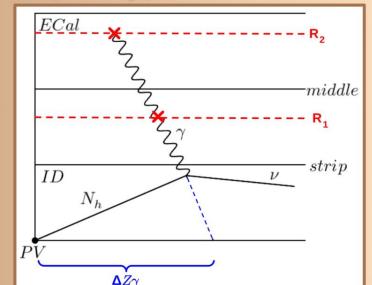
Isn't CONNIE a reactor neutrino experiment?

How would we know that we "saw" dark matter?

Can we "find" Dark Matter during coffee break or lunch?



Non-pointing photons from Long-Lived Particles at the ATLAS ECal in the Dimension-5 Type-I Seesaw

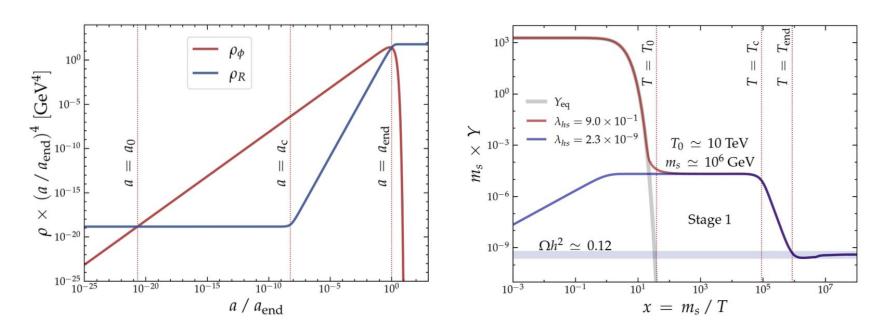

V D-5 introduces new interactions between

sterile neutrinos and SM particles.

V Decay in a photon and a SM neutrino provides the best BR for collider searches.

The photon coming from the decay is not generated in the primary vertex.

A search for its signal within the ATLAS ECal is performed to find the non-pointing parameter.



Walter

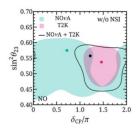
Rodríguez

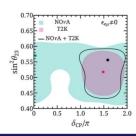
WIMPs and FIMPs in Non-Standard Cosmology

Nicolás Bernal, Joel Jones-Perez, Roberto Lineros and <u>Javier Silva-Malpartida</u>

We explore the dark matter genesis in scenarios where a matter component dominates the early universe

Alleviating tension: NO ν A and T2K with NSI at source (π -decay)


https://arxiv.org/abs/2310.18401


Edson da Silva Souza UNICAMP-IFGW-GEFAN

$$\mathcal{L}^{\mathrm{NSI}} = \mathcal{L}_{(\pi^{+} \to l_{\alpha}^{+} + \nu_{\alpha})}^{\mathrm{SM}} + \sqrt{2} G_{F} V_{ud}^{\mathrm{CKM}} [\epsilon_{P}]_{\alpha\beta} (\bar{u} \gamma^{5} d) (\bar{\ell}_{\alpha} P_{L} \nu_{\beta}) + \text{h.c.}$$

$$\pi_{\mathrm{PS}}^{+} \to e^{+} + \nu_{\mu} : \epsilon_{\mathrm{e}\mu} \qquad \pi_{\mathrm{PS}}^{+} \to \mu^{+} + \nu_{\mathrm{e}} : \epsilon_{\mu\mathrm{e}}$$

Probability NSI: $P^{\text{NSI}} = R_{\alpha\beta}^{\text{NSI}}/\phi_{\alpha}\sigma_{\beta}$ for $\mathcal{M}_{\alpha k}^{S} = U_{\alpha k}^{*}\mathcal{A}_{L}^{S} + [\epsilon_{\text{NSI}}U]_{\alpha k}^{*}\mathcal{A}_{\text{NSI}}^{S}$

$\chi^2_{ m min}$	Standard Osc.		
	NO	IO	
ΝΟνΑ	51.8	52.5	
T2K	79.6	83.8	
$NO\nu A + T2K$	140.8	139.6	
χ^2_{PG}/N_{par}	9.4/4	3.3/4	
p _{PG} -value	5%	51%	

$\chi^2_{\rm min}$	$ $ ϵ_{ϵ}	$e\mu$
χ_{\min}	NO	IO
ΝΟνΑ	48.3	50.4
T2K	75.0	77.3
$NO\nu A + T2K$	131.3	135.2
χ^2_{PG}/N_{par}	8/6	7.5/6
p _{PG} -value	24%	28%