

Mexican group in Astrophysical Sources of Gravitational Waves detection via Data Analysis

Claudia Moreno

Physics department Universidad de Guadalajara

claudia.moreno@academico.udg.mx

III LAS4RI for HECAP Symposium: Update of the Strategic Plan August 27, 2024

Gravitational Waves

- > 1915: Einstein's General Relativity theory is published
- **1916**: Prediction of Gravitational Waves \geq
- **1993:** Taylor and Hustler win a **Nobel prize** \succ
- ▶ **2015**: First direct observation of GWs by the Laser Interferometer Gravitational Wave **Observatory (LIGO)**

win a Nobel prize

▶ ...

 \succ

Image: phys.org

Gravitational Wave detectors

- GW passing through two objects change distance between them
- GW detectors: interferometers (the longer, the more sensitive)
- Preferably far away from human activities

- L-shaped Interferometer
- Michelson-Fabry-Pérot
- Sensitivity about:

$$h=\frac{\Delta L}{L}\approx 1/10^{22}$$

- Isolated from disturbances
- Mirrors are suspended
- Laser beam operates in vacuum

The dynamic Universe

Quadrupolar formula for GW production:

$$\mathbf{h}_{ij}^{TT}(t, \mathbf{x}) = \frac{1}{D} \ddot{Q}_{ij}(t - D/c, \mathbf{x})$$

To produce GW we need **aspherical** mass-energy movement.

Compact Binaries:

- BBH with circular/elliptical orbits
- Black hole neutron star
- Binary neutron stars
- Intermediate-mass black hole
- Primordial black holes

Other:

- Core-collapse supernovae
- Gamma ray burst
- Cosmic strings
- Boson cloud
- Background polarizations, etc.

URORE SIMONNET/LIGO/CALTECH/MIT/SONOMA STATE

Next target: GW from core-collapse supernovae

- SN are exotic astrophysical objects
 - The last SN seen by human in the milky way was in 1604:
 Kepper's SN
 - The last SN known to have occurred in the milky way was about 300 years ago: Cassiopea A
 - The last notable SN in the vicinity of the milky way was in 1987: SN1987A
- Highly complex numerical simulations because their evolution mechanism
- The next frontier in the multi-messenger astrophysics is the observation of CCSNe (EM+Neutrinos+GW)

CCSNe Multimessenger astronomy

Motivation

- Theoretical and numerical analysis of GW fromCBC, gamma-ray bursts, supernovae, cosmological models and multimessenger astronomy in CCSNe
- Detection and reconstruction of GW from CCSN signals using cWB cWB Pipeline Operation
- Machine and deep learning methods to identify glitches and to enhance confidence, and to identify rotating progenitor types
- Parameter estimation and identification of CCSNe GW features (e.g., HFF, SASI, core-bounce)
- Dissemination and outreach activities of the GW astronomy, and promote the participation of more women and minorities

Methodology

- Implement and tune numerical codes with hydrodynamics and neutrinos equations to compute solutions of CCSN that yield to GW templates.
- Development of a new method, based on machine/deep learning, for the search and detection of GW from CCSN based on a novel multi-channel convolutional neural network (CNN) architecture. Implementation of methods and performance tests.
- Use the available software cWB and PyCBC to obtain and analyze the interferometer data from the LIGO, VIRGO and KAGRA observatories.
- Identification of CCSN event candidates of GW that are detected and reported by astronomers using electromagnetic observations.
- To do collaborations with groups in particles physics in the search of neutrinos, gamma rays, x rays, optical y radiofrequencies signals between other in MMA.

Scientific contributions

- Close limit aproximations using Teukolsky formalism
- Obtaining gravitational waves from inspiral binary systems using LIGO data
- Residual neural networks to classify the high frequency emission in corecollapse supernova gravitational waves
- A search for distinctive footprints of compact binary coalescence within alternatives theories of gravity

- Machine and deep learning models to identify and reduce noises
- Theory and simulations of GW from long gamma-ray burst jet
- Post-Newtonian Gravitational Waves with cosmological constant Λ from the Einstein-Hilbert theory

https://inspirehep.net/authors/1069404

Our group

Guadalajara, Jalisco

- Located in west of Mexico
- 2nd biggest city in Mexico
- Known as the Silicon Valley of Mexico
- Guadalajara is 60 km from Tequila town

University of Guadalajara, CUCEI

- 2nd biggest university of Mexico
- 16 campus in México, 140,348 alumni
- Undergraduate, Master and Ph. D. program in Physics
- Strong physics and mathematics faculty

Tecnologico de Monterrey

- Top 3 University in Mexico
- 24 campus in México, 94,420 alumni
- Undergraduate, Master and Ph. D. program in Computer Science
- Multi-campus university

O Tranal III Pharmacian (8) ATM

GWDAMX

Profesor Investigador Dra. Claudia Moreno González

Profesor Investigador Dr. Roberto Santos Silva

Investigador Postdoctoral Dr. Rafael Hernández Jiménez

Estudiante de Doctorado M en C. Laura O. Villegas Olvera

Estudiante de Maestría Fis. Emmanuel A. Avila Vargas Fis. Lucy D. García Bravo

GWDAMX @

Profesor investigador Dr. Ramiro Franco Hernández

Investigador Postdoctoral

Dr. Ricardo Escobedo Alcaraz

Estudiante de Maestría

Estudiante de Maestría Fis. César E. Tiznado Alonso

Profesor Investigador

Dr. Javier M. Antelis

Ortíz

Investigador

Dr. Fabian E.

Peña Arellano

Investigador Postdoctoral

Dr. Manuel David Morales

Profesor Investigador

Dr. Alejandro Casallas Lagos

GWDAMX @

Tecnológico de Monterrey

Future plans

- Consolidation of the Grupo Latinoamericano de Análisis de Datos en Ondas Gravitacionales (Current interactions with students and scientists from Mexico, Colombia, and Chile)
- To recruit undergraduate, graduate student, postdoctoral and professor researchers
- To promote gravitational waves research in more Mexican Universities of México and Latinoamerica
- To realize numerical simulations of CCSN
- To motivate Mexican and latin-american young girls and boys (emphasis in marginalized sectors) to study STEM careers
- Outreach activities for general public with talks and workshop

The importance of gravitational waves

- Test and verify general relativity (alternative theories)
- Learn more about known sources (or unknow)
- Explore the dark part of the universe
- A new era start: Multimesenger astronomy
- Gravitational Wave astronomy is a multidisciplinary research field,
- These research let you learn theoretical models, data analysis, numerical simulations techniques and experimental applications
- Many exciting issues and open problems!

bobonart

Expectations

Command and control center

Interferometric Lab

f

Thanks all for your attention!

Dr. Claudia Moreno

claudia.moreno@académico.udg.mx

https://www.facebook.com/grupoondasgravitacionales http://gravitationalwaves.mx

