IFT-Perimeter-SAIFR Journeys into Theoretical Physics 2024 Saturday Exam

• Write your name on each page

• Number each page used to solve a given problem as $1/n, 2/n, \ldots, n/n$ where n is the number of pages used to solve that problem

• Do not solve more than one problem per page – these exams will be split apart and graded by different people.

- Problem 1 (Equilibrium and Hermite Polynomials): 25%
- Problem 2 (Localization in 1D via the Landauer approach): 25%
- Problem 3 (Lengths and Spaceship): 25%
- Problem 4 (Aharanov-Bohm Effect): 25%

◦ Full Name:

◦ I am interested in applying to the IFT masters program even if I am not accepted into the PSI program: Yes | No

◦ If accepted into any of the programs, I would be interested in starting my fellowship at the IFT

in \vert August 2024 \vert March 2025 \vert August 2025 \vert March 2026 \vert (choose one)

◦ The areas of physics which I am most interested in are:

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the harder parts on as many exercises as possible. This is a difficult exam, so do not be discouraged if you get stuck on an exercise.

1 Equilibrium and Hermite Polynomials

In this problem we have N particles in an infinite line at positions $x_1 < x_2 < \cdots < x_N$. Particle i feels an external force $F(x_i) = -x_i$ as well as an interaction force $f(x_i - x_j)$ for the interaction with each of the other particles. The location of the particles at equilibrium is thus given by the vanishing of the sum of all forces,

$$
F(x_i) + \sum_{j \neq i} f(x_i - x_j) = 0, \qquad i = 1, ..., N.
$$
 (1)

Note that for x positive (negative) the force $F(x)$ is negative (positive) so that the external force tries to confine the particles around the origin. This problem has two parts A and B for two different interaction forces $f(x)$:

Problem A:
$$
f(x) = \frac{1}{x}
$$
, Problem B: $f(x) = \frac{2}{x^3}$ (2)

We will establish the following remarkable theorem:

The particle's locations x_i which are determined by (1) are the same for both problems and are nothing but the roots of the Hermite polynomials $H_N(x)$ ¹. In a single formula, the solutions to (1) for both problems are simply given by

$$
H_N(x_i) = 0 \tag{3}
$$

The Hermite polynomial $H_N(x)$ is a polynomial of degree N solving the linear differential equation $P''_N - 2xP'_N + 2NP_N = 0$. This fixes the polynomials up to an overall normalization which is irrelevant for this problem as it does not affect the location of its roots.

One and Two particles

1. [2pt] Verify the key theorem (3) for $N = 1$ and for $N = 2$ for both problems A and B.

Checking the key theorem for $N > 2$ is quite a bit harder! This is what we turn to next. We will establish it first for problem A. Then we will show that problem B admits the same solutions as problem A.

Problem A

We define $Q(z) \equiv \prod_{j=1}^{N} (z - x_j)$.

2. [4pt] Consider the ratio

$$
r(z) = \frac{Q''(z)}{Q'(z)}.
$$
\n⁽⁴⁾

Show that at $z = x_i$ this ratio simply evaluates to $r(x_i) = \sum_{j \neq i} g(x_i, x_j)$ and find g. This holds for arbitrary x_i . Show that if the x_i solve (1) for problem A then

$$
r(x_i) = 2x_i \tag{5}
$$

¹You probably saw them when solving the Harmonic oscillator in Quantum Mechanics. The wave function of the *n*-th excited state is given by a gaussian times the Hermite polynomial of degree *n*.

3. [4pt] Consider the combination

$$
P(z) = Q''(z) - 2zQ'(z)
$$
\n(6)

with Q defined as above with x_i solving (1) for the problem A choice of $f(x) = 1/x$. Note that since Q is a polynomial, the combination $P(x)$ is also a polynomial. What is the degree of this polynomial and what are its roots?

4. **[4pt]** Show that $Q(z)$ obeys the differential equation

$$
Q''(z) - 2zQ'(z) - \alpha Q(z) = 0.
$$
 (7)

Fix α and establish the main theorem (3) for problem A. Hint: If you have two polynomials which are proportional to each other, you can easily fix the constant of proportionality by expanding them around a convenient point.

Problem B

5. [2pt] Both problems A and B can be derived as the extremization condition $\partial_{x_i}\mathcal{L}_{A,B} = 0$ for a Lagrangian

$$
\mathcal{L}_X = \sum_i V(x_i) + \sum_{i < j} v_X(x_i - x_j), \qquad X = A, B \,, \tag{8}
$$

where $V(x) = x^2/2$. What is $v_A(x)$ for problem A? What is $v_B(x)$ for problem B?

6. [5pt] Show that for any set of roots x_i we have

$$
\mathcal{L}_B = \frac{1}{2} \sum_i (\partial_{x_i} \mathcal{L}_A)^2 + N(N-1)/2 \tag{9}
$$

Hint: What do we need to do to establish that two rational functions are the same?

7. [4pt] Prove theorem (3) for problem B.

Figure 1: Left: the configuration with 1 scatterer. Right: the configuration with 2 scatterers.

2 Localization in 1D via the Landauer approach

In this problem, we are going to see a model for the phenomenon of *localization* in a 1D system, and we will reach this result via the so-called Landauer approach.

Let us first recall the S-matrix formulation for the problem of the scattering of a beam against an obstacle (see Fig. 1, left panel). A beam coming from the left, having amplitude I , gets partially reflected by the obstacle, giving rise to the left moving beam A, and is partially transmitted to the right of the obstacle with amplitude B . I, A , and B are connected by the S-matrix, which incorporates all the dynamics information of the scattering process. In detail, we have the following relations

$$
\Psi_{\text{out}} = S \cdot \Psi_{\text{in}}, \qquad S \equiv \begin{pmatrix} r & t \\ t & r' \end{pmatrix}, \qquad (10)
$$

where the vector $\Psi_{\text{in}} \equiv (I, 0)^T$ denotes the incoming states (notice that we are assuming here that there is no incoming beam from the right of the barrier), the vector $\Psi_{\text{out}} \equiv (A, B)^T$ denotes the outgoing beams and the scattering coefficients r , t , and r' , satisfy the following relations due to the requests of unitarity and time-reversal symmetry

$$
R \equiv |r|^2, \qquad T \equiv |t|^2, \qquad R' \equiv |r'|^2,
$$

\n
$$
R + T = 1
$$

\n
$$
R = R',
$$

\n
$$
\frac{r}{(r')^*} = -\frac{t}{t^*}.
$$
\n(11)

In the Landauer approach, the *dimensionless* electrical resistance of the barrier is given by the formula

$$
r_{\rm el} = \frac{R}{T} \,. \tag{12}
$$

Now consider the situation depicted in Fig. 1 on the right. An incoming wave, having amplitude denoted by I (which we will assume is fixed to $I = 1$), encounters a series of 2 scatterers, denoted by 1 and 2, respectively (and characterized by parameters r_i , t_i , and r'_i , with $i = 1, 2$), and leaves them with amplitude D . Between the two scatterers, the beam propagates freely, and therefore we can assume

$$
B' = Be^{i\phi} \quad C' = Ce^{i\phi},\tag{13}
$$

with ϕ being a coefficient related to the distance between the two scatterers and that we will get rid of at a later stage.

1. **[2pt]** Write a system of equations for A, B, C, and D, and use them to obtain the following expression for the outcoming beam (recall that we assume $I = 1$)

$$
D = \frac{t_1 t_2 e^{i\phi}}{1 - e^{2i\phi} r_1' r_2}.
$$
\n(14)

- 2. [2pt] Given that the total transmission coefficient T_{12} is $T_{12} = |D|^2$, write an expression for the electrical resistance, r_{el} , of the system of two scatterers, in terms of the reflection coefficients R_1 and R_2 , the transmission coefficients T_1 and T_2 , and the angle $\theta \equiv 2\phi \arg(r_2 r_1')$.
- 3. [5pt] Assuming that ϕ is a random uniformly distributed variable in the interval $[0, 2\pi]$, obtain a formula for the *averaged* resistance $\bar{r}_{el} \equiv \frac{1}{2i}$ $\frac{1}{2\pi} \int_0^{2\pi} r_{\rm el}(\theta) d\theta$.
- 4. [7pt] Ohm's law says that the total resistance for passing by both barriers is the sum of the resistances of the two barriers. Does the total resistance \bar{r}_{el} obtained at the previous point satisfy the Ohm law? In the negative case, is \bar{r}_{el} larger or smaller than the Ohmic prediction?
- 5. $[4pt]$ Now assume that we have a set of *n* identical scatterers, that are collectively characterized by a total averaged resistance $\bar{r}_{el}^{(n)}$. Using the results of the previous points, show that by adding an extra identical scatterer the resistance becomes

$$
\bar{r}_{\rm el}^{(n+1)} = \bar{r}_{\rm el}^{(n)} + \bar{r}_{\rm el}^{(1)} + 2\bar{r}_{\rm el}^{(n)}\bar{r}_{\rm el}^{(1)}\,. \tag{15}
$$

6. [5pt] Use the above result to get a differential equation for the resistance of n scatterers, denoted by $\bar{r}_{el}(n)$, and show that the solution goes as

$$
\bar{r}_{\rm el}(n) \to e^{2\bar{r}_{\rm el}^{(1)}n} \,, \tag{16}
$$

when n is very large, *i.e.* that the resistance grows *exponentially* with the number of scatterers thus showing a very non-Ohmic behavior.

3 Length measures in different frames

In special relativity, length and time measures are observer dependent.

Consider a spacecraft moving in a 2-dimensional space $t - x$, its "rear" edge following the trajectory $x^2 - c^2t^2 = a_r^{-2}$, and its "front" edge following the trajectory $x^2 - c^2t^2 = a_f^{-2}$ f^{-2} , with constant a_f and a_r . √

You may find the integral $\int \frac{dt}{\sqrt{1-t}}$ $\frac{dt}{1+t^2}$ = ArcSinh(t) = log (t + $\overline{t^2+1}$ useful below. It behaves as $log(2t)$ at large t.

- 1. **[1pt]** Draw the space-time trajectory of the spacecraft in coordinates t (vertical axis) and x (horizontal axis).
- 2. [1pt] Are the trajectories of the rear and front edges of the spacecraft time-like, light-like or space-like?
- 3. [1pt] Show that at $t = 0$ the spacecraft is spatially at rest with respect to the t, x pair of coordinates.
- 4. [3pt] What is the length of the spacecraft at rest in the t, x coordinates? Call it ΔL . What is the length of the spacecraft measured at fixed, generic t ? Is it t dependent? How does it behave in the $t \to 0$ and $t \to +\infty$ limits?
- 5. [5pt] An astronaut travelling in the spacecraft measures the length of the spacecraft by using the radar technique. (S)he measures the time it takes for a light signal to travel from the rear of the spacecraft to a mirror in its front and finally collecting it at the rear. Explain why this length is time-independent.

Hint: Use boost symmetry to show that any two radar measurements are related.

- 6. [5pt] By picking a suitable emission time, compute the length measured by an observer at the rear of the spacecraft in terms of a_f and a_r .
- 7. [2pt] Verify that the 2-velocities $(dt/d\tau, dx/d\tau)$ corresponding to the spacecraft rear and front points have the space-component proportional to t . Interpret the constant of proportionality as acceleration.
- 8. [7pt] Let us suppose the spacecraft will keep this trajectory until getting to Proxima Centauri, which is 4.2 light years from us. How much "terrestrial" time t would it take? How much time for the astronauts? Assuming $a_r c^2 \sim a_f c^2 = g \equiv 10m/sec^2$, would the astronauts be able to survive the travel without the need for hybernation?

Hint: You might want to show – and use – the estimate $g \simeq c/(1 \, year)$.

4 Aharanov-Bohm Effect

Although electromagnetism can be described classically in terms of the electric and magnetic field, $E(t, \vec{x})$ and $B(t, \vec{x})$, quantum electromagnetism also depends on the potential field $A(t, \vec{x})$. As discussed below, this leads to the Aharanov-Bohm effect involving flux quantization.

- 1. [**1pt**] Suppose \vec{B} satisfies $\vec{\nabla} \cdot \vec{B} = 0$. Show that locally $\vec{B} = \vec{\nabla} \times \vec{A}$ for some $\vec{A}(t, \vec{x})$.
- 2. [**1pt**] Suppose $\vec{\nabla} \times \vec{E} = -\frac{d}{dt} \vec{B}$. Show that locally, $\vec{E} = -\frac{d}{dt} \vec{A} + \nabla \phi$ for some $\phi(t, \vec{x})$.
- 3. [1pt] Show that the definition of \vec{A} and ϕ are ambiguous up to the local gauge transformation $\vec{A} \to \vec{A} + \vec{\nabla}\Lambda$, $\phi \to \phi + \frac{d}{dt}\Lambda$ for any $\Lambda(t, \vec{x})$.
- 4. $[4pt]$ Show that the non-relativistic equations of motion for a particle of mass m and charge q moving in an electromagnetic background,

$$
m\frac{d^2}{dt^2}\vec{x} = q\left(\vec{E} - \vec{B} \times \frac{d}{dt}\vec{x}\right),\,
$$

can be derived from the Lagrangian $L = \frac{1}{2r}$ $\frac{1}{2m}\vec{P}\cdot\vec{P} - V(x)$ where $\vec{P} = m\frac{d}{dt}\vec{x} + q\vec{A}$. What is $V(x)$ as a function of ϕ and \hat{A} ?

If $\Psi(t, \vec{x})$ is the wave function of a particle of charge q, the momentum operator is defined by $\vec{P} =$ $-i\hbar\vec{\nabla} + q\vec{A}.$

- 5. [4pt] For the expectation value $\langle \vec{P} \rangle$ to be invariant, the wave function $\Psi(t, \vec{x})$ needs to also transform when one performs the gauge transformation of \vec{A} . What is the gauge transformation of $\Psi(t, \vec{x})$ which leaves $\langle \vec{P} \rangle$ invariant under $\vec{A} \rightarrow \vec{A} + \vec{\nabla} \Lambda$?
- 6. [3pt] Show that $[P_j, P_k] = -i\hbar q \epsilon_{jkl} B_l$. Explain how the wave function of the particle is affected if the particle takes different paths through a magnetic field.

Suppose one has a cylindrical solenoid of radius R and infinite length along the z axis and there is a constant B field pointing in the z direction inside the cylinder, i.e.

- $B_z(t, x, y, z) = f$ for $x^2 + y^2 < R^2$, $B_z(t, x, y, z) = 0$ for $x^2 + y^2 \ge R^2$.
- 7. [2pt] Show that $\oint_L d\vec{x} \cdot \vec{A}$ is non-zero for any closed path L around the cylinder.
- 8. [2pt] Show that \vec{A} can be locally gauge-fixed to zero outside the cylinder, but the gauge parameter Λ cannot be globally defined to be single-valued.
- 9. [5pt] Show that $\Psi(t, \vec{x})$ can only be single-valued if the value of f takes certain values. What are the values of f such that $\Psi(t, \vec{x})$ is single-valued?
- 10. [2pt] A Dirac monopole at the point \vec{x}_0 can be interpreted as a solenoid of infinitesimal radius which stretches to infinity in one direction and ends at the point \vec{x}_0 , i.e.

$$
\vec{B}(t,\vec{x}) = 4\pi g \int^{\vec{x}_0} d\vec{x}' \delta^3(\vec{x} - \vec{x}')
$$

where g is the magnetic charge of the monopole and the integral streches from ∞ to the point \vec{x}_0 . What is the condition on g such that $\Psi(t, \vec{x})$ is single-valued?