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The quantum vacuum is a state with mechanical properties
(Casimir Polder effect) and thermal characteristics (Unruh
Hawking effect).
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Also there is entanglement associated to the quantum vacuum
state.

|0k⟩ ∼
1

cosh r

∑
n

tanhn r|nk⟩I|nk⟩II. (1)
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Cosmic String
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• Topological defect (Kibble).

• Relativistic version of Abrikosov
vortices.

• Symmetry breaking phase transition in
the early universe.

• Flat spacetime with non-trivial topology.

• Conical space with angular deficit.
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The line element of the spacetime generated by the cosmic
string is given by

ds2 = dt2 − dr2 − dz2 − r2dφ2, (2)

where 0 < r <∞, −∞ < z <∞, 0 < φ < 2πb with

b = 1 − 4µG.

In this space the field modes are given by

ψk(r, φ, z) =
√

p
2πb

J|λl|(pr)eiλlφeiκz, (3)

where λ = 1/b, l = {0,±1,±2, ...}, p ∈ (0,∞) and κ ∈ (−∞,∞)
and the Green function of the field can be written as

G(t, x, t′x′) = − 1
2π

∫
dµ(k)

∫
dω

1
ω2 − ω2

k
eiω(t−t′)ψk(x)ψ∗

k(x
′).

(4)
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The string quantization condition requires that the parameter
λ = b−1 must be a positive integer. This is the topological
charge of the string λ = n, with n ∈ N. Therefore the Wightman
function

G+(t, x, t′, x′) =
1

4π2

n−1∑
k=0

1
(∆t + iϵ)2 − d2

kn
, (5)

where ∆t = t − t′, ∆r = r − r′, ∆z = z − z′, ∆φ = φ− φ′ and

dkn =

√
∆r2 +∆z2 + 4rr′ sin2(πk/n +∆φ/2). (6)
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We model a qubit as a two-level system and consider a pair of
identical qubits with a Hamiltonian given by

H0 = ω (σ̃ ⊗ I+ I⊗ σ̃) + j
(
σ+ ⊗ σ− + σ− ⊗ σ+

)
, (7)

where ω is the energy gap and the projector operator has been
defined σ̃ = |e⟩ ⟨e|. In addition, we consider a direct Heisenberg
XY-interaction between the qubits with coupling constant j

|g⟩

|e⟩
ω σ+ σ−

|g⟩

|e⟩
σ− σ+

j
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The energy levels structure of the two qubits system is as
follows

|E4⟩ = |gg⟩

|E1⟩ = |ee⟩

|E2⟩ = (|eg⟩+ |eg⟩)/
√

2

|E2⟩ = (|eg⟩ − |eg⟩)/
√

2
2j

with their corresponding energy levels E1 = 2ω, E2 = ω + j,
E3 = ω − j and E4 = 0.
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The interaction between the detectors and the scalar field is
given by

Hint = g (M1φ(χ1(τ)) +M2φ(χ2(τ))) , (8)

where the field is evaluated at the spacetime locations of the
qubits χn(τ), with n = 1, 2.

σ−σ+
γ γ

σ−σ+
γ γ

aσ+ + a†σ−

a†σ+ + aσ−

The operators M1 = m ⊗ I with M2 = I⊗ m are the monopole
operators of the two-qubit system.
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The total Hamiltonian of the qubits-field system is given by

H = H0 +Hint, (9)

where the free Hamiltonian is H0 = H0 +Hfield
0 . The dynamic of

the system is given by the Sturn-Liouville equation for the total
density operator in the interaction picture

i
∂ϱI(τ)

∂τ
= [HI

int(τ), ϱI(τ)], (10)

with the initial condition ϱI(τ0) = ρin ⊗ |0⟩ ⟨0|, where |0⟩ is the
vacuum of quantum field on the cosmic string spacetime. We
solve perturbatively this equation with the Dyson series

ϱI(τ) =ϱI(τ0)− i
∫ τ

τ0

dτ
[
HI

int(τ), ϱI(τ0)
]

−
∫ τ

τ0

dτ
∫ τ

τ0

dτ′
[
HI

int(τ),
[
HI

int(τ
′), ϱI(τ0)

]]
+ · · · (11)
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Since we are interested only on the qubits final state, realize a
trace over the field DOF ρI(τ) = Trfield ϱI(τ).

ρI(τ) = ρin + g2
2∑

n,p=1

∫ τ

τ0

dτ
∫ τ

τ0

dτ′δρnp(τ, τ
′)G+

np(τ, τ
′), (12)

where

δρnp(τ, τ
′) =MI

p(τ
′)ρinMI

n(τ)− θ(∆τ)MI
n(τ)MI

p(τ
′)ρin

− θ(−∆τ)ρinMI
n(τ)MI

p(τ
′), (13)

and ∆τ = τ− τ′, the Heaviside function is θ and the Wightman
function of the field evaluated at the qubits trajectory points is
denoted by

G+
np(τ, τ

′) = G+(χn(τ), χp(τ
′)), (14)

where n, p = {1, 2}.
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i∂ϱI(τ)
∂τ =

[
HI

int, ϱI(τ)
]

Unitary evolution,
Closed system,
Perturbation theory,
Small times regime.

ϱI(τ) = U(τ, τ0)ϱI(τ0)U†(τ, τ0)

Trace over field’s DOFTrace over field’s DOF

i∂ρ(τ)∂τ = [H0, ϱ(τ)] + {L0, ρ}+
∑

k LkρL†
k

(Lindblad master equation)

Weak coupling limit,
Born approximation,
Numerical approach,
Large times regime.

ρqubits(τ) = ρqubits(τ0) + ∆ρ(τ)
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Considering the qubits initial state, at time τ = τ0, with zero
entanglement

ρin =


p 0 0 0
0 1/2 − p 0 0
0 0 1/2 − p 0
0 0 0 p

 , (15)

where the single probability that defines the initial state has to
be 0 ≤ p ≤ 1/2. The qubits density state after the interaction
with the vacuum becomes

ρ(τ) =


p + δp1 0 0 δα

0 1/2 − p + δp2 δβ 0
0 δβ∗ 1/2 − p + δp3 0
δα∗ 0 0 p + δp4

 .

(16)
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To measure the entanglement of a two qubit system we use the
Negativity. We define the negativity of a quantum state
described by the density operator ρ(τ) as

N (τ) = 2

∣∣∣∣∣∣
∑
λi<0

λi

∣∣∣∣∣∣ =
(∑

i

|λi| − λi

)
, (17)

where λi are all the negative eigenvalues of the partial
transpose ρPT(τ) of the density matrix ρ(τ). For our case the
Negativity depends on various parameter that define the initial
qubits state, the topologoical charge of the string, and the
spatial lcoations of the qubits

N = N (τ, ω, j, p,n, x1, x2). (18)
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We can consider stationary qubits that only have spatial
separations on the angular, axial or radial variables.

∆φ ∆z ∆r
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After some interaction time there is a sudden birth of
entanglement
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Figure: Negativity as a function of interaction time for the axial case.
We use T , evaluated with ω = 1, j = −0.5, ∆z = 1, and r = 1.
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We see that at the resonance points j = ±ω there is maximum
amount of entanglement. This imply that the Heisenberg
XY-interaction enhanced the process of entanglement
harvesting.
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Figure: Negativity as a function of the interaction coupling constant j.
These figures are given for T = 1000, ω = 0.5, r = 1,∆z = 100.
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The Negativity oscillates as the distance between the qubits
increases. For the case j = 0, at the limit of large qubits
separations there is no entanglement left.
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Figure: Negativity as a function of the distance between the qubits ∆z
for the case without XY-interaction. Here we evaluated with ω = 0.5,
j = 0, T = 1000, r = 1.
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The Negativity oscillates as the distance between the qubits to
the cosmic string increases. For the case j ̸= 0, at the limit of
large qubits separations there is some remaining entanglement.
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Figure: Negativity as a function of the distance between the qubits to
the cosmic string, r. Here it is use T = 1000, ω = 1.5, j = 1, ∆z = 100.
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The generation of entanglement from the vacuum fluctuations
is a non-local process.

Figure: Contour plot T vs ∆z of the negativity with n = 4. this
graphic are evaluated with ω = 0.5, j = 0.5, r = 1, ∆φ = ∆r = p = 0,
and g = 0.01.
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• The quantum vacuum can be a natural source of (small)
entanglement.

• The direct qubits coupling via the Heisenberg
XY-interaction can benefit the harvesting process.

• The maximum entanglement is obtain at the resonance
points j = ±ω.

• In the limit of large separation between the qubits there is
some remaining amount of entanglement for j ̸= 0.

• The higher the topological charge n the more entanglement
we can obtain in the cosmic string spacetime.

THANKS!

20/20

Conclusions

20/20



• The quantum vacuum can be a natural source of (small)
entanglement.

• The direct qubits coupling via the Heisenberg
XY-interaction can benefit the harvesting process.

• The maximum entanglement is obtain at the resonance
points j = ±ω.

• In the limit of large separation between the qubits there is
some remaining amount of entanglement for j ̸= 0.

• The higher the topological charge n the more entanglement
we can obtain in the cosmic string spacetime.

THANKS!

Conclusions

20/20


	Conclusions

