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every theory consistent with the symmetries

theory space

RG flow

RG theory



conformal invariant theories (CFT)

describe continuous phase transitions

needed for continuum limit

theory space

RG fixed points

can be solved exactly

RG theory



universal quantities:  
critical exponents,  
universal ratios, 
scaling functions

CFT data: scaling dimensions, 
structure constants

theory space

scaling regions

under the reach of (CFT) 
perturbation theory

relevant vs irrelevant perturbations

RG theory



theory space

how well do we know the flow?

c- and a-theorem 
in even dimensions

exact flows

Weyl consistency 
conditions

RG theory



theory space

flow goes on until all fields 
have been integrated out: 
theories with mass scales

types of flows

flow reaches 
a fixed point

flow between fixed points 

flow starts at 
a fixed point: 
fundamental 

 theory

RG theory



Quantum Gravity may be Asymptotically 
Safe, i.e. non-perturbatively renormalizable 
at a non-trivial fixed point of the RG flow...

Background effective average action (bEAA)Asymptotic Safety

A Theory Space and an RG Flow for 
Quantum Gravity can be constructed!

...there is evidence that a non-trivial fixed point 
with a finite dimensional UV critical surface exists!

A. Codello, R. Percacci and C. Rahmede, Annals Phys. 324  (2009) 414, arXiv:0805.2909 [hep-th] 
A. Codello, R. Percacci and C. Rahmede, Int. J. Mod. Phys. A 23  (2008) 143, arXiv:0705.1769 [hep-th]



tive real part. Then a third operator (RµνRµν or the equivalent) was added,
and a third eigenvalue was found, with λi real and negative. This was not
encouraging. If each time that new terms were included in the truncation,
new eigenvalues appeared with negative real part, then the ultraviolet crit-
ical surface would be infinite dimensional, and the theory, though free of
couplings that exploded at high energy, would lose all predictive value at
high energy.

In just the last few years calculations have been done that allow more
optimism. Codello, Percacci, and Rahmede41 have considered a Lagrangian
containing all terms

√
gRn with n running from zero to a maximum value

nmax, and find that the ultraviolet critical surface has dimensionality 3 even
when nmax exceeds 2, up to the highest value nmax = 6 that they considered,
for which the space of coupling constants is 7-dimensional. Furthermore,
the three eigenvalues they find with negative real part seem to converge
as nmax increases, as shown in the following table of ultraviolet-attractive
eigenvalues:

nmax = 2 : −1.38 ± 2.32i −26.8
nmax = 3 : −2.71 ± 2.27i −2.07
nmax = 4 : −2.86 ± 2.45i −1.55
nmax = 5 : −2.53 ± 2.69i −1.78
nmax = 6 : −2.41 ± 2.42i −1.50

In a subsequent paper42 they added matter fields, and again found just three
ultraviolet-attractive eigenvalues. Further, this year Benedetti, Machado,
and Saueressig43 considered a truncation with a different four terms, terms
proportional to

√
gRn with n = 0, 1 and 2 and also

√
gCµνρσCµνρσ (where

Cµνρσ is the Weyl tensor) and they too find just three ultraviolet-attractive
eigenvalues, also when matter is added. If this pattern of eigenvalues con-
tinues to hold in future calculations, it will begin to look as if there is a
quantum field theory of gravitation that is well-defined at all energies, and
that has just three free parameters.

The natural arena for application of these ideas is in the physics of
gravitation at small distance scales and high energy — specifically, in the
early universe. A start in this direction has been made by Reuter and his
collaborators,44 but much remains to be done.

41A. Codello, R. Percacci, & C. Rahmede, Int. J. Mod. Phys. A23, 143 (2008)
42A. Codello, R. Percacci, & C. Rahmede, Ann. Phys. 324, 414 (2009)
43D. Benedetti, P. F. Machado, & F. Saueressig, 0901.2984, 0902.4630
44A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002); Phys. Lett. B527, 9
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Effective Field Theory, Past and Future

Steven Weinberg∗

Theory Group, Department of Physics, University of Texas

Austin, TX, 78712

Abstract

This is a written version of the opening talk at the 6th International Work-
shop on Chiral Dynamics, at the University of Bern, Switzerland, July 6,
2009, to be published in the proceedings of the Workshop. In it, I remi-
nisce about the early development of effective field theories of the strong
interactions, comment briefly on some other applications of effective field
theories, and then take up the idea that the Standard Model and General
Relativity are the leading terms in an effective field theory. Finally, I cite
recent calculations that suggest that the effective field theory of gravitation
and matter is asymptotically safe.

∗Electronic address: weinberg@physics.utexas.edu
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Key contribution to Asymptotic SafetyAsymptotic Safety



fRG and local symmetries

Preserve gauge symmetry while 
breaking space-time symmetry: 

lattice gauge theory 
dynamical triangulations 

….
Preserve space-time symmetry 

while breaking gauge symmetry: 
effective average action + modified ward identities 

background effective average action 
…

The coarse-graining procedure necessarily 
breaks gauge or space-time symmetries...



gµ� = ḡµ� + hµ�

Background field method in Quantum Gravity

�gµ� = rµ⇥� +r�⇥µ

�hµ� = rµ⇥� +r�⇥µ �ḡµ� = 0

�̄hµ� = 0 �̄ḡµ� = r̄µ⇥� + r̄�⇥µ

Physical diffeomorphisms:

Quantize fluctuations around a general background:

Background diffeomorphisms:

x↵ ! x↵ + �↵

TE
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Cutoff action:

Background effective average action (bEAA)

�Sk[�; ḡ] =
1

2

Z
ddx

p
ḡ�Rk[ḡ]�

S[h, C̄, C; ḡ] = S[ḡ + h] + Sgf [h; ḡ] + Sgh[h, C̄, C; ḡ]

Classical action:

(� + �̄)�Sk[⇥; ḡ] = 0

(� + �̄)S[⇥; ḡ] = 0

TE
CH
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Background effective average action (bEAA)

The bEAA can be seen as a non-perturbative regularised version of the 
background effective action

Standard definition of 
the background 
effective action

Add the cutoff action!

We want to preserve the one-loop structure of the flow!

e��[�;ḡ] =

Z
D� exp

✓
�S[⇥+ �; ḡ] +

Z
ddx

p
ḡ �(1,0)[⇥; ḡ]�

◆

e��k[�;ḡ] =

Z
D� exp

✓
�S[⇥+ �; ḡ]�⇥Sk[�; ḡ] +

Z
ddx

p
ḡ �(1;0)

k [⇥; ḡ]�

◆

� = (h, C̄, C)
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Background effective average action (bEAA)

�̄k[ḡ] = �k[0; ḡ]

(� + �̄)�k[⇥; ḡ] = 0

�k[�; ḡ] = �̄k[ḡ + h] + �̂k[�; ḡ]

��̄k[ḡ] = 0

The bEAA is invariant under physical + background  diffeomorphisms:

We can define a gauge invariant functional (gEAA):

The gEAA is invariant under physical diffeomorphisms: TE
CH
NI
CA
L!



Exact fRG equations for QG

The flow of the gEAA is not closed!

⇥t�k[�; ḡ] =
1

2
Tr

⇣
�(2;0)
k [�; ḡ] +Rk[ḡ]

⌘�1
⇥tRk[ḡ]

�t�̄k[g] =
1

2
Tr

⇣
�(2;0)
k [0; g] +Rk[g]

⌘�1
�tRk[g]

The exact flow equation for the bEAA has a 
one-loop structure:

�t�̄k[ḡ] = �t�k[0; ḡ]

Obtain the flow equation for the gEAA:



ΓΛ = S∗

ΓΛ = S

Γ0 = Γ

Γk

Γk

The bEAA interpolates smoothly between the bare and the quantum 
action but theory space is enlarged to bi-field functionals!

Theory space

Enlarged theory space

Exact fRG equations for QG



Gauge theoriesEinstein-Hilbert truncation

�̄k[g] =
1

16�Gk

Z
ddx

p
g (2⇥k �R)

Einstein-Hilbert truncation:

Running Newton’s constant

Running cosmological constant

�̃k = k�2�k G̃k = kd�2Gk



Einstein-Hilbert truncation

�̄k[ḡ + �kZ
1/2
h,k h] =

1

�2
k

Z
ddx

p
ḡ
�
2⇤k � R̄

�

+
Z1/2
h,k

�k

Z
ddx

p
ḡ


�⇥̄h� r̄µr̄⇤hµ⇤ + hµ⇤R̄

µ⇤ +
1

2
h
�
2⇤k � R̄

��

+
1

2
Zh,k

Z
ddx


1

2
hµ⇤⇥̄hµ⇤ � 1

2
h⇥̄h+ hµ⇤r̄⇤r̄�h

�
µ � hr̄µr̄⇤hµ⇤

� hµ⇤h�
µR̄⇤� � hµ⇤h�⇥R̄�µ⇥⇤ � hR̄µ⇤hµ⇤

+

✓
1

4
h2 � 1

2
h�⇥h�⇥

◆�
2⇤k � R̄

��

+O
⇣
�3/2
k h3

⌘

�̂k[Z
1/2
h,k h, Z

1/2
C,kC̄, Z1/2

C,kC; ḡ] =
1

2
Zh,k

Z
ddx

p
ḡ
�
hµ⇥h

µ⇥ � h2
�
m2

h,k

+
1

2�k
Zh,k

Z
ddx

p
ḡḡµ⇥

✓
r̄�h�µ � ⇥2

k

2
r̄µh

◆2

� ZC,k

Z
ddx

p
ḡ C̄µ

⇥
r̄�g⇥�rµ + r̄�gµ⇥r�

�⇥kr̄µg⇥�r�
⇤
C⇥

↵k = �k = 1

mh,k = 0

Details of the 
truncation:

�k =
p

16⇥Gk

Pauli-Fierz mass:

Gauge-fixing 
parameters:
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Einstein-Hilbert truncation

�h,k = �⇥t logZh,k �C,k = �⇥t logZC,k

⇤t�̄k[g] =
1

2
Tr

⇤tRk(⇥)� ⇥h,kRk(⇥)

1 (⇥� 2⇤k) +U
� Tr

⇤tRk(⇥)� ⇥C,kRk(⇥)

⇥�µ� �Rµ�

U↵�
⇢� =

✓
�↵�⇢� � 1

2
g↵�g⇢�

◆
R+ g↵�R⇢� +R↵�g⇢�+

� 1

2

�
�↵⇢R

�
� + �↵�R

�
⇢ +R↵

⇢ �
�
� +R↵

��
�
⇢

�
�

�
R� ↵

⇢ � +R� ↵
� ⇢

�
+

� d� 4

2(d� 2)

�
Rg↵�g⇢� + g↵�R⇢� +R↵�g⇢�

�

Calculate the functional traces using the heat kernel techniques

Insert in the flow equation:
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CH
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⇤t⇥̃k = �2⇥̃k +
8⇥

(4⇥)d/2�
�
d
2 + 2

�
⇢
d(d+ 1)

4

d+ 2� �h,k

1� 2⇥̃k

� d(d+ 2� �C,k)

� 2⇥̃k


d(d+ 1)(d+ 2)

48

d� �h,k

1� 2⇥̃k

� d(d+ 2)

12
(d� �C,k)

�d(d� 1)

4

2 + d� �h,k

(1� 2⇥̃k)2
� (d+ 2� �C,k)

��
G̃k

⇤tG̃k = (d� 2)G̃k +
16⇥

(4⇥)d/2�
�
d
2 + 2

�
⇢
d(d+ 1)(d+ 2)

48

d� �h,k

1� 2⇥̃k

�d(d+ 2)

12
(d� �C,k)�

d(d� 1)

4

2 + d� �h,k

(1� 2⇥̃k)2
� (d+ 2� �C,k)

�
G̃2

k

The beta function system is not closed!

Asymptotic Safety



One-loop approximation:
⌘h,k = 0 ⌘C,k = 0

How do we obtain a closed beta function system? 

Standard approximation:

⌘h,k =
@tk

k
⌘C,k = 0

Calculate the anomalous dimensions:

�h,k(�̃k, G̃k) �C,k(�̃k, G̃k)

Asymptotic Safety

The NSVZ beta function
Can be derived this way!



�h,k = � 1

24⇥

h
(39� 358�̃k + 176�̃2

k + 1792�̃3
k � 2560�̃4

k + 1024�̃5
k)G̃k

� 1

48⇥
(381� 2176�̃k + 5040�̃2

k � 616�̃3
k)G̃

2
k

�

⇥

(1� 2�̃k)

5 � 1

12⇥
(10� 63�̃k + 115�̃2

k � 56�̃3
k � 4�̃4

k)G̃k

+
1

576⇥2
(18� 125�̃k + 307�̃2

k � 226�̃3
k)G̃

2
k

��1

�C,k = � 1

48⇥(1� 2�̃k)

h
(1� 2�̃k)

4(105 + 16�̃k)G̃k

� 1

192⇥
(12813� 40496�̃k + 85760�̃2

k � 107520�̃3
k + 57856�̃4

k)G̃
2
k

�

⇥

(1� 2�̃k)

5 � 1

12⇥
(10� 63�̃k + 115�̃2

k � 56�̃3
k � 4�̃4

k)G̃k

+
1

576⇥2
(18� 125�̃k + 307�̃2

k � 226�̃3
k)G̃

2
k

��1

A. Codello, G. D’Odorico and C. Pagani  Phys. Rev. D 89 (2014) 081701(R)

Asymptotic Safety
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�̄k[g] =

Z
ddx

⇥
g


1

16�Gk
(2⇤k �R) +RF1,k(⇥)R+Rµ�F2,k(⇥)Rµ�

�
+O(R3)

More general approximation scheme: 
curvature expansion

Running structure functions: full “functional” RG

Integro-differential equations!

�tFi,k = Fd
Rk

�
�k, Gk, Fi,k, F

0
i,k, F

00
i,k

�TE
CH
NI
CA
L!

Asymptotic Safety



S[�, g] =
1

2

Z
d2x

p
ggµ�⇥µ�⇥�� =

1

2

Z
d2x

p
g���

�k[g] =

Z
d
2
x
p
g [ak + bkR+Rck(⇥)R] +O(R3)

�t�k[g] =
1

2
Tr

�tRk(⇥)

⇥+Rk(⇥)

Minimally coupled scalar field on a two dimensional manifold:

The non trivial part of the EAA is purely gravitational:

The exact fRG equations a trace of a function of the covariant 
operator:

running 
structure 
function

the bare action is 
Weyl invariant

�� = � 1
p
g
⇥µ (

p
ggµ�⇥��)

Curvature expansion: an example
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�k[g] =
k2

4⇥

Z
d2x

p
g +

⇤

6
log

k

k0

� 1

96⇥

Z
d2x

p
gR

"p
⇥/k2 � 4(⇥/k2 + 2)

⇥ (⇥/k2)3/2
�(⇥/k2 � 4)

#
R

+O(R3)

�0[g] = � 1

96�

Z
d2x

p
gR

1

⇥
R

For              we recover Polyakov’s effective action:k = 0

The EAA interpolates smoothly between the bare and the quantum action:

Curvature expansion: an example
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c0(x) = � 1

96�x

c1(x) = 0

A. Codello, Annals Phys. 325 (2010) 1727-1738
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k′

φp

Λ
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Curvature expansion: an example
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Curvature expansion: corrections to Newton’s law

�̄0[g]
��
R2 =

1

32�2

Z
d4x

p
g


1

60
R log

✓
⇥

k20

◆
R+

7

10
Rµ� log

✓
⇥

k20

◆
Rµ�

�

V (r) = �MG0

r


1 +

43G0

30�r2

�

4d flow induced by the Einstein-Hilbert truncation

leads to Quantum Gravitational 
corrections to Newton’s law:  

A. Satz, A. Codello and F. D. Mazzitelli, Low energy Quantum Gravity from the Effective Average Action, 
Phys. Rev. D 82  (2010) 084011, arXiv:1006.3808 [hep-th]



Curvature expansion: corrections to Newton’s law

�̄0[g]
��
R2 =

1

32�2

Z
d4x

p
g


1

60
R log

✓
⇥

k20

◆
R+

7

10
Rµ� log

✓
⇥

k20

◆
Rµ�

�

V (r) = �MG0

r


1 +

43G0

30�r2

�

4d flow induced by the Einstein-Hilbert truncation

leads to Quantum Gravitational 
corrections to Newton’s law:  

A. Satz, A. Codello and F. D. Mazzitelli, Low energy Quantum Gravity from the Effective Average Action, 
Phys. Rev. D 82  (2010) 084011, arXiv:1006.3808 [hep-th]

UV shows up starting 

from  
-terms!

ℛ
3



Effectivity vs Universality

theory space

Universality 
describes the 
massless IR

Effective field 
theories 
describe the 
massive IR

Two main reasons why mathematical modeling of nature actually works



• The theory of small fluctuations of the metric

• Planck’s scale is the characteristic scale of gravity

• Classical theory (CT) is successful over many orders of magnitude 

EFT of Gravity

gµ� ! gµ� +
p
16�Ghµ� = gµ� +

1

M
hµ�

M ⌘ 1p
16�G

=
MPlanckp

16�

MPlanck =
1p
G

= 1.2⇥ 1019 GeV

gµ�

1

M
hµ�



Seff [g] = M2


I1[g] +

1

M2
I2[g] +

1

M4
I3[g] + ...

�

I1[g] =

Z
d4x

p
g
⇥
M2c0 � c1R

⇤

I2[g] =

Z
d4x

p
g
⇥
c2,1R

2 + c2,2Ric
2 + c2,3Riem

2
⇤

I3[g] =

Z
d4x

p
g
⇥
c3,1R⇤R+ c3,2Rµ�⇤Rµ� + c3,3R

3 + ...
⇤

Derivative expansion of the UV action

EFT of Gravity

UV action contains all couplings expressed in terms of the scale M



Seff [g] = M2


I1[g] +

1

M2
I2[g] +

1

M4
I3[g] + ...

�

I1[g] =

Z
d4x

p
g
⇥
M2c0 � c1R

⇤

I2[g] =

Z
d4x

p
g
⇥
c2,1R

2 + c2,2Ric
2 + c2,3Riem

2
⇤

I3[g] =

Z
d4x

p
g
⇥
c3,1R⇤R+ c3,2Rµ�⇤Rµ� + c3,3R

3 + ...
⇤

Derivative expansion of the UV action

EFT of Gravity

UV action contains all couplings expressed in terms of the scale M

UV predicts the  coefficients only!ℛ3



Covariant EFT of Gravity

=�
i

+
1

2
+

1

M2

h

i
+

1

2
� 1

12
+

1

8
+

1

M4

h

+ . . .

LO

NLO

CT

NNLO

1) the general lagrangian of order       is to be used both at tree level and in loop diagrams

2) the general lagrangian of order            is to be used at tree level and as an insertion in loop 
diagrams

3) the renormalization program is carried out order by order

E2

En�4

The EFT recipe in three lines

I1

I2

I3



+
1

2
= � 1

2(4⇥)d/2

Z
ddx

⇥
g trR �i

✓
�⇤
m2

◆
R+ ...

Curvature expansion

The finite physical part of the effective action is covariantly encoded in the structure functions
which can be computed using the non-local heat kernel expansion

Non-local heat kernel 
structure functions

Non-local heat kernel
A. O. Barvinsky and G. A. Vilkovisky, Nucl. Phys. B 282 (1987) 163
I. G. Avramidi, Lect. Notes Phys. M 64 (2000) 1
A. Codello and O. Zanusso, J. Math. Phys. 54 (2013) 013513

�i

✓
X

m2

◆
⌘ lim

�UV !1

Z 1

1/�2
UV

ds

s
s�d/2+2 [fi(sX)� fi(0)]e

�sm2
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= � 1

2(4⇥)2

Z
d4x

p
g tr


1Rµ��Ric

✓
�⇤
m2

◆
Rµ� +

1

120
R�R

✓
�⇤
m2

◆
R

�1

6
R�RU

✓
�⇤
m2

◆
U+

1

2
U�U

✓
�⇤
m2

◆
U+

1

12
�µ���

✓
�⇤
m2

◆
�µ�

�
+

1

2

Curvature expansion

�Ric(u) =
1

40
+

1

12u
� 1

2

Z 1

0
d⇥


1

u
+ ⇥(1� ⇥)

�2
log [1 + u ⇥(1� ⇥)]

�R(u) = � 23

960
� 1

96u
+

1

32

Z 1

0
d⇥

n 2

u2
+

4

u
[1 + ⇥(1� ⇥)]

� 1 + 2⇥(2� ⇥)(1� ⇥2)
o
log [1 + u ⇥(1� ⇥)]

�RU (u) =
1

12
� 1

2

Z 1

0
d⇥


1

u
� 1

2
+ ⇥(1� ⇥)

�
log [1 + u ⇥(1� ⇥)]

�U (u) = �1

2

Z 1

0
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Curvature expansion
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LO effective action to      R2
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Adding matter
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UV divergencies and renormalization with matter
Scalars
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Adding matter
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Finite LO terms with matter
Flat space corrections to Newton’s potential
J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)
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Matter induced effective action
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Corrections to Newton’s potential
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The truth behind Feynman diagrams...

Corrections to Newton’s interaction



Leading quantum corrections to Newton’s potential
J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)
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Corrections to Newton’s interaction
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Leading quantum corrections to Newton’s law are incredibly small!
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Corrections to Newton’s interaction



Look for physical situations where
LO corrections are enhanced

Can we ever observe
quantum gravity effects?



Unified evolution of the universe
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A unified evolution of the universe
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R+R2 = ��

Early times: Inflation and reheating

10�4 0.01 1 100 104

0.001

0.01

0.1

1

10



Late times: Dark energy
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Effective Friedmann equations

R+R2 = 0
R+R2 = �

R+R2 = �� R+R2 = �� + �m



Marginally deformed Starobinsky

Leading quantum corrections to tensor-to-scalar ratio
A. C, J. Joergensen, F. Sannino and O. Svendsen, JHEP 1502, 050 (2015)
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