Characterising and calibrating levitated nano-mechanical systems for sensing

P. Barker and the Optomechanics group at UCL

Levitated optomechanics at UCL

Macroscopic quantum systems

- Cooling and manipulation of nanoparticles in optical, electric and magnetic traps
- Macroscopic quantum mechanics
	- Creation of non-classical states, wave function collapse

Laser refrigeration – cooling internal degrees of freedom

• Controlling motional heating

Force detection

- Dark matter detector
- Interactions with single microscopic particles

Applications

- Accelerometers
- Single nanoparticle characterisation

How might our techniques be useful?AUGI

Spin Entanglement Witness for Quantum Gravity

Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn Phys. Rev. Lett. 119, 240401 - Published 13 December 2017

Physics See Synopsis: A Test of Gravity's Quantum Side

B field

Probable requirements

• Ultra-high vacuum and low environmental temperatures

iiii

- Low internal temperatures
	- Refrigeration and **direct cooling**
- Cooling all motional degrees of freedom
	- **Coherent scattering** and feedback 6 DOF cooling
	- **Sympathetic cooling** all degrees of freedom
- Detailed understanding mass, charge, temperature, shape and material
	- **Characterisation**
	- **Calibration of fields, forces and charge**

Levitated optomechanics

Cooling and trapping particles levitated in vacuum

AUGI

High Q oscillators sensitive to external forces

6 important motional degrees of freedom

Experimental setup

Monolithic tweezer assembly

Silica nanoparticle

 P_{TW} ~200-500 mW@ 1064nm Lens NA~0.77 (single lens)

Cavity parameters

Lcav=12.23 ± 0.02 mm κ/2π=198 ± 1 kHz Finesse ~ 31000

Temperature of $r=60$ nm $SiO₂$ nanosphere

$$
x^{2}\rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xx}(\omega) d\omega = \frac{k_{B}T_{eff}}{m\omega_{x}^{2}}
$$

As the pressure is reduced

Motion cooled by factor $~10^7$

2D cooling in the tweezer polarization plane

Zero-point motion \sim 7 pm

Cooling of non-spherical nanoparticles

Article

Power spectra

iiiii

Particle geometry

 \bullet

Spectral features with time

TITTE

This transition is very well reproduced in numerical simulation

Characterisation

Can we can differentiate between particles with different shapes?

Can we use to identify any shape?

Characterisation

Angular scattering

 J_{\bullet}

 \mathbf{I}

Ellipsoid

 \blacktriangleleft

 $\overline{}$

Measurement of single nanoparticle anisotropy by laser induced optical alignment and Rayleigh scattering for determining particle morphology

Export Citatio

Markus Rademacher, DJonathan Gosling, DAntonio Pontin, DMarko Toroš, CDJence T. Mulder, D Arjan J. Houtepen,³ D and P. F. Barker^{1,a)} D

Single nanoparticle characterisation

Comments

- Can cool using coherent scattering and feedback
- Motional decoherence from light scattering and internal heating challenging
- What more general technique could we use to cool and control?

Cooling via collisions

A levitated atom-nanosphere hybrid quantum system

To cite this article: A Hopper and P F Barker 2024 New J. Phys. 26 013015

$$
C = a^3(n^2 + 1)/(n^2 + 2)
$$

Cold atoms - He*

Magic wavelengths for the $2³S \rightarrow 2¹S$ transition in helium

R. P. M. J. W. Notermans,¹ R. J. Rengelink,¹ K. A. H. van Leeuwen,² and W. Vassen^{1,3}

Ē $\boldsymbol{\alpha}$

Energy

 \sim

Repulsive potential

$$
I_3 = I_0 \left[3 + \frac{6C}{r^6} + \frac{2C^2k^2}{r^4} + \frac{2C^2k^4}{r^2} + \frac{4Ck^2}{r} \right]
$$

\n
$$
U_{Opt} \propto \alpha I_3
$$

\n
$$
U_{CP} = -\frac{\hbar}{8\pi^2 \epsilon_0} \sum_{l=0}^{\infty} (2l+1)(l+1)
$$

\n
$$
\times \frac{a^{2l+1}}{r^{2l+4}} \int_0^{\infty} d\zeta \alpha(i\zeta) \frac{\epsilon(i\zeta) - 1}{\epsilon(i\zeta) + [(l+1)/l]}
$$

20

40

60

Energy (K)

80

100

TITLE

 \blacktriangleright

Sympathetic cooling

Damping rate

$$
\gamma_C = \frac{\xi}{\alpha_c} n \sigma v_{th}
$$

$$
4m_e m_e
$$

$$
\xi = \frac{4m_n m_a}{(m_n + m_a)^2}
$$

10 orders difference in mass BUT cooling rates in excess of 10 kHz

Primary source of heating due to voltage noise 10 nv/Sqrt[Hz]

Temps below 10 μ K appear feasible

Bound states

TITTE

Casimir-Polder **Optical**

 $U_A \propto \frac{1}{r^6}$

$$
U_R \propto \frac{1}{r}
$$

 $k_{R}^{2} < k_{A}^{2}$

Bound states

Tightly bound system with nanosphereatom trap frequencies of 100 -1000 kHz

Lifetime limited by detuning from optical resonances and vibrational noise

Interferometry?

He* *J=1, M^z =-1,0,1*

Trap freq 100 Hz -10 KHz

Particle oscillation of a few microns is much less than optical field extension

B gradient field for transverse S-G

Creation superposition of $M_z = 1, -1$

Allow to fall in trap

S-G creates COM superposition

Close interferometer and measure phase change

Creating atom-nanoparticle quantum superpositions

PHYSICAL REVIEW RESEARCH 3, 033218 (2021)

ELIC

M. Toroš \bullet , ^{1,2} S. Bose, ² and P. F. Barker² ¹School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom ²Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom controlling laser nanoparticle atom controlling laser trapping laser

Comments

- hybrid quantum system
- highly tunable-system with the potential to use different cold atomic species (Cs)
- sympathetic cooling center-of-mass motion, internal ?
- can turn off cooling rapidly
- creation of tightly bound atoms with spin
- could we replace NV for SG or other nanoparticle interferometry
- can we cool rotational motion and internal motion

Impulsive force detection

Collisions with:

- Molecules
- Photons (x-rays)
- Neutrons
- Dark matter

Dark matter landscape

Dark matter nuggets

- Fermionic or bosonic dark matter particle coupling to scalar mediator.
- Coupling can lead to formation of bound dark matter "nuggets".
- Mediator able to couple to nucleons.

$$
V(\vec{r}) = \frac{g_{\chi} N_{\chi} g_n N_n}{4\pi} \frac{1}{|\vec{r}|} e^{-m_{\phi}|\vec{r}|}
$$

Long-range, small-angle scattering m_{ϕ} <eV

IIIIII

Directionality

State-of-the-art

TITLE

Search for Composite Dark Matter with Optically Levitated Sensors

After the State et al., Phys. Rev. A 104 053512

Experimental Procedure

 \mathbf{m}

Experimental Setup

Experimental Setup

Feedback Cooling

Impulsive event detection

$$
M(\omega) = \sigma_A^2 \frac{H^*(\omega)F^*(\omega)}{S(\omega)} e^{-i\omega t_a}
$$

Product of 3 filters

 $M^C(\omega) \equiv 1/L(\omega)$ $M^A(\omega) \equiv H^*(\omega)/L^*(\omega)$ $F^*(\omega)$

Whitening filter

 δ Pattern matching filter

[A. Ortolan et al, Gravitational waves. Proceedings, 2nd Edoardo Amaldi Conference, Geneva, Switzerland, July 1-4, 1997](https://inspirehep.net/literature/486941), 204-215

Experimental Procedure

mm

 \bullet

Application to alpha particles

Application to Alpha Particles

Applications to Nuclear spectroscopy: Malyzhenkov et al., Phys. Rev. A 98, 052103 Carney et al., PRX Quantum 4, 010315 **Sterile Neutrino searches:**

4.6 MeV Alpha - deposit 14 keV

Maximum momentum – \sim 200 MeV

Mechanical detection of nuclear decays: Wang et al., arXiv:2402.13257

Charge Monitoring

Frequency (kHz)

Charge Monitoring (40 days)

THE REAL

Conclusions

- Review of what is possible and potentially useful
- Cooling all DOF by cavity cooling and by collisions
- Characterisation of particles via their motion in traps
- Impulsive sensing of collisions and charge

www.ucloptomechanics.com

Tania Monteiro Chamkaur Ghag

Markus Rademacher

Eva Kilian Amy Hopper Hayden Fu Fiona Alder Louis Hamaide Eva Kilian Amy Hopper Hayden Fu Fiona Alder

Robert James

Heterodyne measurement - ground state **TITTE** \bullet

Ratio of Stokes to anti-Stokes transition

Calibration via interference

fringes:

- 640 nm laser used to form interference fringes at the nanoparticle.
- Utilise linear region to get a calibration of voltage to displacement.

Calibration via interference

fringes:

- 640 nm laser used to form interference fringes at the nanoparticle.
- Utilise linear region to get a calibration of voltage to displacement.

Stochastic forces

M

Stochastic forces

Cross-correlation mechanical spectra:

$$
S_{xy}(\omega) = \frac{1}{2} \left(\left\{ \left[\hat{x} \right]^\dagger \hat{y} \right\} + \left\{ \left[\hat{y} \right]^\dagger \hat{x} \right\} \right)
$$

$$
\mathbf{m} \cup \mathbf{C}
$$

Cross-correlation mechanical spectra: $S_{xy}(\omega) =$ 1 2 $(\widehat{x})^{\dagger}\widehat{y}$ + $(\widehat{y}]^{\dagger}\widehat{x}$

Cross-correlation mechanical spectra:

$$
S_{xy}(\omega) = \frac{1}{2} \left(\left\{ \left[\hat{x} \right]^\dagger \hat{y} \right\} + \left\{ \left[\hat{y} \right]^\dagger \hat{x} \right\} \right)
$$

PSD under directed force:

$$
S_{\chi\chi}(\omega) = |\chi_{\chi}(\omega)|^2 S_{th} (1 + \beta^2 \cos^2 \Psi)
$$

$$
S_{\chi\chi}(\omega) = |\chi_{\chi}(\omega)|^2 S_{th} (1 + \beta^2 \sin^2 \Psi)
$$

Cross-correlation mechanical spectra:

$$
S_{xy}(\omega) = \frac{1}{2} \left(\left\{ [\hat{x}]^{\dagger} \hat{y} \right\} + \left\{ [\hat{y}]^{\dagger} \hat{x} \right\} \right)
$$

 $\overline{\text{mm}}$

 \blacktriangleright

PSD under directed force:

$$
S_{\chi\chi}(\omega) = |\chi_{\chi}(\omega)|^2 S_{th} (1 + \beta^2 \cos^2 \Psi)
$$

$$
S_{\gamma\gamma}(\omega) = |\chi_{\gamma}(\omega)|^2 S_{th} (1 + \beta^2 \sin^2 \Psi)
$$

CSD under directed force:

$$
S_{xy}(\omega) = \text{Re}[\chi_x^*(\omega)\chi_y(\omega)]S_{th}\beta^2\cos\Psi\sin\Psi)
$$

$$
\beta^2 = S_{ff}^{dir}/S_{th}
$$

Experiment setup

Experiment setup

