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Introduction

– Some processes in the Universe (spe-

cially when gravity and quantum

physics are both important) are ex-

tremely hard to observe.

– Can we set up experiments to rebuild

the Universe in the laboratory?

– Can we study fundamental processes

(like Hawking radiation and cosmic

inflation) using analogue classical or

quantum simulators?
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Analogue models of gravity

Analogue models of gravity are systems that can mimick curved space-

time effects (both classical and quantum), e.g. Hawking radiation and

superradiance, leading naturally to questions like “Can we see black hole

evaporation in a laboratory?”
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Fluids ↔ Gravity
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Experimental realizations (some examples)
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Fluids and superfluids
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Theory: background flow

– Flow: constant density, inviscid, irrotational, and axisymmetric.

∇ · v⃗ = 0, ρ(∂t + v⃗ · ∇)v⃗ = −∇P, ∇× v⃗ = 0

– Free boundary problem: depth h is unknown a priori.

– The simplest solution is the irrotational vortex (“draining bath-

tub”): v⃗ = −D
r r̂ +

C
r ϕ̂

– If surface waves propagate with velocity c(r), an analogue event hori-

zon will be present where c(r) = D/r .
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Theory: wave propagation

– Surface waves with frequency ω and wavenumber k satisfy the

dispersion relation(
ω − v⃗ · k⃗

)2

=

(
gk +

σ

ρ
k3

)
tanh(kh).

– For long wavelengths (kh << 1) and no surface tension (σ = 0), the

dispersion relation is linear ω − v⃗ · k⃗ =
√
ghk, and we can see that

c =
√
gh is the wave speed.

Analogy (linear dispersion):

(∂t + v⃗ · ∇)2 δh = gh∇2δh ↔ ∂µ
(√

−ggµν∂ν∂ψ
)
= 0
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Superradiance in fluids - theoretical predictions (m = 1)

– Corotating waves (ω > 0) can be amplified.

– Counterrotating waves (ω < 0) are never amplified.
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Superradiance in fluids - more theoretical predictions (m = 1)
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Main conclusion from the numerics: taking into account the regime of va-

lidity of our approximations, the maximum amplification in our parameter

space is ≈ 1.4.
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Superradiance in fluids - experiment

• Water tank: ∼ 1,5 m × 3,0 m.

• Closed circuit, water pumped from auxilliary tank (below main

tank). Stationary rotating flow obtained.

• Cameras and detector placed above the tank (close to the ceiling).
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Superradiance in fluids - experiment
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Superradiance in fluids - experiment

• Plane wave (created by the wave generator) propagates and scatters

off the vortex. We work in the frequency range 2,9 Hz - 4,1 Hz.

The fluid is 6.25 cm deep.

• The observed pattern is a mixture: incident + scattered waves. 13



Superradiance in fluids - experiment

– The data acquired by the detector gives us the surface of the fluid

as a function of time and position. We fourier transform the signal

in time and filter out the excitation frequency f0. Higher harmonics

(2f0, 3f0, ...) and background flow (f = 0) are eliminated.

– We decompose the signal into azimuthal waves:

φm(r) =

√
r

2π

∫ 2π

0

ϕ(r , θ)e imθdθ

For each m, we write radial profile as: φm = Ain
me

−ikr + Aout
m e+ikr

– By comparing the ingoing and outgoing parts, we extract the reflection

coefficients.
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Superradiance in fluids - experiment
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Superradiance in fluids - experiment

-200 -100 0 100 200

m
 =

 -
2

0

0.1

0.2

-200 -100 0 100 200

m
 =

 -
1

0

0.1

0.2

-200 -100 0 100 200

m
 =

 0

0

0.1

0.2

-200 -100 0 100 200

m
 =

 1

0

0.1

0.2

-200 -100 0 100 200

m
 =

 2

0

0.1

0.2

0.2 0.25 0.3 0.35 0.4
-1

0

1

0.2 0.25 0.3 0.35 0.4
-1

0

1

0.2 0.25 0.3 0.35 0.4
-2

0

2

0.2 0.25 0.3 0.35 0.4
-2

0

2

0.2 0.25 0.3 0.35 0.4
-2

0

2

Right side

• Dots: signal

• Lines: fit to

Aine
−ikr + Aoute

ikr

Left side

• Fourier profiles

16



Superradiance in fluids - experiment
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Counterrotating modes are absorbed, while corotating modes can be amplified.
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Quasinormal ringing of analogue black holes

Characteristic modes of a bell: Pseudo-Degeneracy in Hand bell Modes, arXiv: 1004.0491
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Quasinormal ringing of analogue black holes
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Quasinormal ringing of analogue black holes

20

BH spectroscopy: to identify a black

hole by observing the spectrum of its

characteristic waves (their oscillation

frequencies and decay times).

Vortex spectroscopy: can we identify

a hydrodynamical vortex by observing

the spectrum of its characteristic waves?

I.e. can we determine C and D in v⃗ =

−D
r r̂ +

C
r ϕ̂ using waves?



Quasinormal ringing of analogue black holes - theory

– The characteristic spectrum can be approximated using the properties

of lightrings (LRs):

ωQNM(m) ≈ ω⋆(m)− iΛ(m)

(
n +

1

2

)
,

where ω⋆(m) = 2πf⋆(m) is the angular frequency of an m-mode or-

biting on the LR, Λ(m) is the Lyapunov exponent of the orbit for this

specific m-mode, and n is the overtone number.

– The LR properties can be deduced from the hamiltonian

H = ω − v⃗ · k⃗ = ±

√(
gk +

σ

ρ
k3

)
tanh(kh)

by looking for the critical point H = 0, ∂H∂r = 0, ∂H∂kr = 0.



Quasinormal ringing of analogue black holes - theory

T.Torres, S.Patrick, MR, S.Weinfurtner, CQG 36, 194002 (2019)

A: Critical points of the hamiltonian when C = D = 1m2 · s−1.

B: Recovering C and D from the spectrum A using only m < 0 modes*.

C: Recovering C and D from the spectrum A using only m > 0 modes*.

D: Recovering C and D from the spectrum A using all modes*.

* Darker colors represent smaller errors. 22



Quasinormal ringing of analogue black holes - experiment

– We set up a vortex flow out of equilibrium to observe the emission

of characteristic modes during its relaxation. Our experiment was

conducted in a 3 m long and 1.5 m wide rectangular tank with a

2 cm-radius sink hole at the centre. Water is pumped continuously

from one corner at a flow rate of 15± 1 ℓ/min.

– The sink-hole is covered until the water raises to a height of 10.00±
0.05 cm. Water is then allowed to drain, leading to the formation of

a draining vortex. We recorded the perturbations of the free surface

when the flow was in a quasi-stationary state at a water depth of

5.55± 0.05 cm. The entire procedure was repeated 25 times.

– The data acquired by the detector gives us the surface of the fluid as

a function of time and position.
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Quasinormal ringing of analogue black holes - experiment

– The resulting vortex is axisymmetric to a good approximation, allow-

ing us to perform an azimuthal decomposition to study the charac-

teristic modes:

δh(t, r , θ) = Re

[∑
m∈Z

δhm(t, r)e
imθ

]

– We select specific azimuthal modes by performing a polar Fourier

transform and we extract the associated radial profiles δhm(t, r). Az-

imuthal modes with m > 0 are co-rotating with the flow while modes

with m < 0 are counter-rotating with the flow.

– By calculating the time Fourier transform of δhm(t, r), we estimate the

Power Spectral Density (PSD) of eachm-mode for r ∈ [7.4 cm, 25 cm].
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Quasinormal ringing of analogue black holes - experiment

The PSDs are finally averaged over the radius in order to look at the r-

independent frequency content, i.e. the oscillation frequency of the LR

modes. For each averaged PSD, corresponding to a different m, the lo-

cation of the peak, fpeak(m), is obtained.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

25



Quasinormal ringing of analogue black holes - experiment

T.Torres, S.Patrick, MR, S.Weinfurtner, CQG 36, 194002 (2019)

T.Torres, S.Patrick, MR, S.Weinfurtner, PRL 125, 011301 (2020)
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Superradiant instabilities in vortices (work in progress)

27

Experimental setup: The flow is driven

by a spinning propeller (centrifugal pump).

Superfluid helium flows along the outer

cylindrical boundary and then towards the

central drain hole, forming a draining (bath-

tub) vortex.

Experimental results indicate the presence

of instabilities in the system if the rota-

tion speed is sufficiently fast. What is the

origin of such an instability?



Superradiant instabilities in vortices (work in progress)

More degrees of freedom are needed to describe the system. Velocity and

density perturbation are given in terms of ψ1 and ξ⃗1 by:

v⃗1 = ∇ψ1 + ξ⃗1, ρ1 = −ρ0
c2

dψ1

dt
.

Velocity perturbations have a scalar component ψ1 and a vectorial com-

ponent ξ⃗1. The scalar part is referred to as the acoustic degree of freedom

while the vectorial part is referred to as the vorticity degree of freedom.

28



Superradiant instabilities in vortices (work in progress)

The fields evolve according to

d

dt

(
1

c2
dψ1

dt

)
=

1

ρ0
∇·

[
ρ0

(
∇ψ1 + ξ⃗1

)]
,

d ξ⃗1
dt

= ∇ψ1×ω⃗0−
(
ξ⃗1 · ∇

)
v⃗0.

We examine the effect of vorticity on superradiant instabilities around

free surface vortices with a finite size rotational core.
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The black hole bomb (BHB) is a positive

energy state trapped in the exterior region.

It grows because negative energy is trans-

mitted into the interior and absorbed. The

ergoregion instability (EI) is a negative en-

ergy bound state in the interior region. It

grows when positive energy is radiated to

infinity. When the system is closed on both

ends, a hybrid instability occurs when these

states come into resonance with each other.



Final Remarks

– Analogue models of gravity have been around for more than 40 years.

Experimental realizations began approximately 15 years ago. Most

experiments so far are based on 1D systems, so we want to improve

and explore more possibilities in 2D systems.

– Physicists have been able to observe several phenomena through ana-

logue models of gravity, including the Hawking effect, superradiant

scattering and the characteristic oscillation frequency of a vortex.

– Active area of research: other systems and other phenomena are being

investigated.
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