Liquid Liquid Phase Separation and Fibrillization of Intrinsically Disordered Peptides

Joan Shea, Department of Chemistry, UC Santa Barbara

Proteins can assemble in different ways

"Solid"

Droplets Biomolecular condensates Coacervates

Amyloid Fibrils

Outline

Part 1: Liquid-Liquid Phase Separation: From Model Systems to Tau

Part 2: Aggregation of the Tau Protein

Coacervation = liquid liquid phase separation = formation of droplets = formation of biomolecular condensates

Liquid condensate

Solid condensate

What drives phase separation?

Brangwynne, Tompa, Pappu, Nature Physics, 11, (2015)

Computational Approaches

Computational Approach

Dilute conditions

Computational Approaches

Model System: EK sequence

net charge = 0

(equal fractions of + and -)

Simple Coacervation

Coarse-Grained Model

Coarse-grained peptide chain

Each amino acid represented by a single site

Implicit solvent

Explicit salt ions

Discrete Gaussian chain polyelectrolyte model

charge sequence

 N_l sites per molecule

$$\{\sigma_i\}=\{\sigma_1,\sigma_2,\ldots,\sigma_N\}$$

charge density

$$rac{1}{N}\sum_i |\sigma_i|$$

- $\sigma_i\;$ charge on bead i
- $b_{}$ segment length

Formally equivalent representations

Field Theoretic simulation

low polymer density

high polymer density

Particle Based Simulations

SCD κ

James Mc Carthy

Particle Based Simulations

Particle Based versus Field Theoretic Simulations

J. Phys. Chem. Lett., 2019, 10 (8), pp 1894–1899

We map the boundaries of the phase diagram

"Blocky" sequences form coacervates more readily

Increasing the salt concentration favors a single phase

Computational Approach

Limitations

- No amino acid specificity
- Implicit solvent

Upper (UCST) and Lower (LCST) critical solution temperature

Mittag, Biochemistry. 2018; 57(17): 2478–2487.

Computational Approach

OLD: Model System: KE (Lys/Glu)sequence

- NEW: Model System: RE(Arg/Glu)sequence RE1: Poly-Arg/Glu RE2: Poly-Arg/Glu 0000000000000000 RE3: Poly-Arg/Glu •••••••••• RE4: Poly-Arg/Glu 0000000000

All atom replica exchange MD reference simulations

Arg

HO

-NH

NH,

NH

€NH,

Glu

MO

0=

 H_2N -

 $\mathbf{O} =$

O=

Θ

Relative Entropy Coarse-graining

Minimizing the relative entropy:

$$S_{rel} = \int \int \mathscr{D}_{AA}(\mathbf{r}) \ln\left(\frac{\mathscr{D}_{AA}(\mathbf{r})}{\mathscr{D}_{CG}(\mathbf{R})}\right) \delta(\mathbf{M}(\mathbf{r}) - \mathbf{R}) d\mathbf{r} d\mathbf{R}$$

27

Relative Entropy Parameterization

RE peptides phase behavior

RE peptides phase behavior

RE1: Poly-Arg/Glu RE2: Poly-Arg/Glu RE3: Poly-Arg/Glu RE4: Poly-Arg/Glu

Tau Protein Liquid Liquid Phase Separation and Fibrillization

MICROTUBULES ARE STABILIZED BY TAU PROTEINS

Function: Tau binding to microtubule

Microtubule Pathology:Tau and Aggregation

Liquid-Liquid Phase Separation of Tau and Fibril Formation

Image: S. Wegmann

Field Theory Modeling of Tau-RNA complex coacervation

Fit excluded volume (B) and Bjerrum length (E) to experimental values for Tau
Field Theory can map out the entire phase diagram of Tau-RNA Complex Coacervation

Field Theory can map out the entire phase diagram of Tau-RNA Complex Coacervation

Tau sequence: The Proline-Rich Domain Liquid-Liquid Phase Separates in vitro

The Proline-Rich Domain Condensates promote Tau association with MTs

197

PRD condensates align along the MTs

MICROTUBULES ARE STABILIZED BY TAU PROTEINS

LLPS CONCENTRATES TAU AND FACILITATES BINDING

MICROTUBULES ARE STABILIZED BY TAU PROTEINS

LLPS CONCENTRATES TAU AND FACILITATES BINDING

Proteins can assemble in different ways

"Solid"

Droplets Biomolecular condensates Coacervates

Amyloid Fibrils

Tau Aggregation: Repeat Domain makes up the core of Tau Fibrils

197

There are many neurodegenerative diseases associated with Tau

There are many forms of Tau

At first glance they all look the same

Transmission Emission Microscopy (TEM)

X-Ray diffraction

Cross-beta structure

Fibrils

But Cryo-EM shows (subtle) differences

The specific fibril shape is a signature of a specific disease

COMMON STRAND-LOOP-STRAND MOTIF

Created: 19 Amino-acid Peptide

WILD TYPE: jR2R3

jR2R3-P301L mutant aggregates faster than jR2R3 and shows more fibril morphologies

jR2R3

jR2R3-P301L

jR2R3-P301L can explore more conformational space

jR2R3-P301L (mutant)

jR2R3-P301L can get out of a "fibril protective" hairpin iR2R3 jR2R3-P301L (mutant)

Overhauser Dynamic Nuclear Polarization (ODNP) experiments show a reduction in hydration water dynamics around 301 site for the $P \rightarrow L$ mutant (jR2R3-P301L)

Increased ordering of water around mutation site

→ locally more hydrophobic

Probing Hydrophobicity Computationally through Umbrella Sampling (INDUS)

Free energy of dewetting a spherical volume in bulk

 $\mu_{\mathbf{ex}} = \mathbf{F}(\mathbf{0}) = -\mathbf{ln}\mathbf{P}_{\mathbf{v}}(\mathbf{0})$

Free energy of dewetting the probe volume in vicinity of a surface

Excess chemical potential is an indication of hydrophilicity or hydrophobicity of the surface

Free energy of dewetting lower for jR2R3-P301L: an additional factor favoring association of jR2R3-P301L

Quantifying Water Structure: water triplet distribution

Increased tetrahedral ordering of hydration waters near the L301 (mutant) compared to P301 (wild type)

Different Force Fields Show Different Hydrophobicity

"fibril protective structure"

1054

5305

Recent CryoEM structure of jR2R3-P301L

В

Professor Songi Han UCSB/ Northwestern University

CryoEM structure of jR2R3-P301L

jR2R3-P301L can seed the fibrillization of full length Tau in Vivo

jR2R3-P301L can seed the fibrillization of full length Tau in Vivo

Before jR2R3 P301L

Prof. Ken Kosik, UCSB

After jR2R3 P301L

jR2R3-P301L acts as a prion: propagates the strain

PNAS (2024) 121 (15) e2320456121

Cells seeded with jR2R3-P301L fibrils undergo division and propagate aggregates to daughter cells

Back-up Slides
Determining Critical Points

diblock E = 6.0 B = 0.1

Mechanical (Pressure Π) and Chemical (Chemical Potential μ) Equilibrium

Determining Critical Points

diblock E = 6.0 B = 0.1

We map the boundaries of the phase diagram

Field Theoretic Model

Partition function for a system of charged Gaussian chains and salt in implicit solvent

$$Z=Z_0\int Dw\int D\psi\;e^{-H[w,\psi]}$$

B: dimensionless excluded volume parameter

- E: dimensionless Bjerrum length
- **C: dimensionless monomer density**

Field Theoretic Simulations

Complex Langevin equations of motion

Ensemble averages over the field configurations

$$\langle O
angle = rac{\int Dw \int D\psi \ Oe^{-H[w,\psi]}}{\int Dw \int D\psi \ e^{-H[w,\psi]}}$$

RE peptides phase behavior

RE4: Poly-Arg/Glu ••••••••••

Discrete Gaussian chain polyelectrolyte model

dimensionless monomer density

$$C\sim
ho b^3$$

dimensionless excluded volume parameter

$$eta U = rac{v}{2} \int d{f r} ar
ho^2({f r}) \qquad \qquad B \sim rac{v}{b^3}$$

dimensionless Bjerrum length

$$eta U = rac{l_B}{2} \int d\mathbf{r} \int d\mathbf{r}' rac{ar{
ho}_e(\mathbf{r}) ar{
ho}_e(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \qquad E \sim rac{l_B}{b}$$

Coarse graining though minimizing S_{rel} (Information Loss)

Chemical Detail & transferability

Minimizing the relative entropy (information-loss):

$$S_{rel} = \int \int \mathscr{D}_{AA}(\mathbf{r}) \, \ln\left(\frac{\mathscr{D}_{AA}(\mathbf{r})}{\mathscr{D}_{CG}(\mathbf{R})}\right) \delta(\mathbf{M}(\mathbf{r}) - \mathbf{R}) d\mathbf{r} \, d\mathbf{R}$$

Shell Adv. Chem. Phys.

Field theoretic simulation water model

MD coarse-grained water model

Match $\epsilon = 80$ at 300 K

Relative entropy parametrization of peptide and water interaction

RE1: Poly-Arg/Glu •••••••••••

 $\sigma = a_i = R_w = 0.158 \, nm$

- $\beta U_{bond,water}$: stiff harmonic with b = 0.01 nm
- $\beta U_{bond,residue}$: harmonic with $b = \sqrt{6} \sigma$

• Electrostatics:
$$\beta U_{el,W-,W+}$$
, $\beta U_{el,W+,W+}$, $\beta U_{el,W-,W-}$

• Excluded volumes:

•
$$u_{W-,W-} = u_{Lys,Lys} = u_{Cl,Cl} = u_{W-,Cl} = u_{Lys,Cl} = 0.1 \, kT \, \sigma^3$$

• $u_{W-,residue} = \left[B^{Srel} (4\pi\sigma^2)^{\frac{3}{2}} \sigma^3 \right] N_{ref}^2 \sigma^{-3} = B_{W-,residue}^{Srel} (4\pi)^{3/2} \sigma^3$

Coarse-grain interactions

$$U_{CG} = \sum_{bonds} U_{bond} + \sum_{i}^{N_T - 1} \sum_{j=i+1}^{N_T} U_{ev}(r_{ij}) + U_{el}(r_{ij})$$

$$\beta U_{bond}(r_{ij}) = \frac{3}{2b^2}(r_{ij} - r_0)^2$$
$$\beta U_{ev}(r_{ij}) = \frac{u_{ij}}{(2\pi(a_i^2 + a_j^2))^{3/2}}e^{-r_{ij}^2/2(a_i^2 + a_j^2)}$$
$$\beta U_{el}(r_{ij}) = \frac{l_B\sigma_i\sigma_j}{r_{ij}}erf\left(\frac{r_{ij}}{2\sqrt{a_i^2/2 + a_j^2/2}}\right)$$

 $a_i = 0.316 \text{ nm}$: bead radius b: statistical segment length $r_0 = 0$: equilibrium bond distance u_{ij} : excluded volume σ_i : charge $l_B = 561.6 \text{ nm}$: Bjerrum length

Sequence Dependent Water-Residue Effective Interaction

Excluded volume interaction with water

Gibbs Ensemble Simulations

$$(n_{I}, V_{I}, T) \qquad (n_{II}, V_{II}, T)$$

$$(n_{I}, V_{I}, T)$$

$$(n_{I}, V_{I}, T)$$

 $egin{aligned} V_T &= V_I + V_{II} & n_T &= n_I + n_{II} \ F(n,V_T,T) &= F_I(n_I,V_I,T) + F_{II}(n_{II},V_{II},T) \ &rac{\partial F}{\partial V_I} &= -(\Pi_I - \Pi_{II}) \ &rac{\partial F}{\partial n_I} &= (\mu_I - \mu_{II}) \end{aligned}$

 $\sum_{i=1}^{n} (n_{II}, V_{II}, T)$

$$\frac{\partial F}{\partial V_I} = -(\Pi_I - \Pi_{II}) = 0$$
$$\frac{\partial F}{\partial n_I} = (\mu_I - \mu_{II}) = 0$$

Gibbs Ensemble Field Theory Simulation (FTS) convergence

CG parametrization of peptide-water interaction using relative-entropy

Optimized parameters: Blurring sigma 0.35 E-W B=0. 182 R-W B=0.228

- The implicit solvent model cannot capture the heterogeneous dielectricity that may occur within the peptide-dense phase. In contrast, the explicit solvent model accounts for environment-dependent dielectricity, unlike the uniform dielectricity assumed in the implicit solvent model.
- This explicit solvent model can be parameterized to incorporate the effect of the peptide sequence on the effective interaction between residues and water into the coarse-graining (CG) process. Previous CG methods totally ignore this.
- As a result, the phase diagram derived from accurately transferring chemical details to the CG system is expected to capture any mesoscopic phase transitions and morphological complexities.

All atom reference simulations for coarse graining

Relative entropy parametrization of peptide and water interaction

RE1: Poly-Arg/Glu •••••••••••

 $\sigma = a_i = R_w = 0.158 \, nm$

- $\beta U_{bond,water}$: stiff harmonic with b = 0.01 nm
- $\beta U_{bond,residue}$: harmonic with $b = \sqrt{6} \sigma$

• Electrostatics:
$$\beta U_{el,W-,W+}$$
, $\beta U_{el,W+,W+}$, $\beta U_{el,W-,W-}$

• Excluded volumes:

•
$$u_{W-,W-} = u_{Lys,Lys} = u_{Cl,Cl} = u_{W-,Cl} = u_{Lys,Cl} = 0.1 \, kT \, \sigma^3$$

• $u_{W-,residue} = \left[B^{Srel} (4\pi\sigma^2)^{\frac{3}{2}} \sigma^3 \right] N_{ref}^2 \sigma^{-3} = B_{W-,residue}^{Srel} (4\pi)^{3/2} \sigma^3$

Coarse-grain interactions

$$U_{CG} = \sum_{bonds} U_{bond} + \sum_{i}^{N_T - 1} \sum_{j=i+1}^{N_T} U_{ev}(r_{ij}) + U_{el}(r_{ij})$$

$$\beta U_{bond}(r_{ij}) = \frac{3}{2b^2}(r_{ij} - r_0)^2$$
$$\beta U_{ev}(r_{ij}) = \frac{u_{ij}}{(2\pi(a_i^2 + a_j^2))^{3/2}}e^{-r_{ij}^2/2(a_i^2 + a_j^2)}$$
$$\beta U_{el}(r_{ij}) = \frac{l_B\sigma_i\sigma_j}{r_{ij}}erf\left(\frac{r_{ij}}{2\sqrt{a_i^2/2 + a_j^2/2}}\right)$$

 $a_i = 0.316 \text{ nm}$: bead radius b: statistical segment length $r_0 = 0$: equilibrium bond distance u_{ij} : excluded volume σ_i : charge $l_B = 561.6 \text{ nm}$: Bjerrum length

Tau and Traumatic Brain Injury

Overhauser Dynamic Nuclear Polarization (ODNP) experiments show a reduction in hydration water dynamics around 301 site for the $P \rightarrow L$ mutant (jR2R3-P301L)

Increased ordering of water around mutation site

→ locally more hydrophobic

Probing Hydrophobicity Computationally through Umbrella Sampling (INDUS)

Free energy of dewetting a spherical volume in bulk

 $\mu_{\mathbf{ex}} = \mathbf{F}(\mathbf{0}) = -\mathbf{ln}\mathbf{P}_{\mathbf{v}}(\mathbf{0})$

Free energy of dewetting the probe volume in vicinity of a surface

Excess chemical potential is an indication of hydrophilicity or hydrophobicity of the surface

Free energy of dewetting lower for jR2R3-P301L: an additional factor favoring association of jR2R3-P301L

Quantifying Water Structure: water triplet distribution

Increased tetrahedral ordering of hydration waters near the L301 (mutant) compared to P301 (wild type)

Dimer Simulations of jR2R3 and JR2R3-P301L

Prof. Songi Han (Northwestern)

Seeding

Can jR2R3-P301L can seed the fibrillization of full length Tau?

jR2R3-P301L can seed the fibrillization of full length Tau in Vitro

Fibril of Tau Fragment jR2R3-P301L

DNIKHVLGGS VQIVYK

Full length Tau

²⁷² **GGK**²⁷⁴ R1

С

- ²⁷⁵vqiinkkldls-nvqskcgskdnikhvpgggs³⁰⁵ R2
- ³⁰⁶VQIVYKPVDLS-KVTSKCGSLGNIHHKPGGGQ³³⁶ R3
- ³³⁷ vevksekldfkdrvqskigsldnithvpgggn³⁶⁸ R4
- ³⁶⁹ KKIETHKLTFRENAKAKTD³⁸⁷

Full Length Tau Fibrils

jR2R3-P301L can seed the fibrillization of full length Tau in Vivo

Before jR2R3 P301L

After jR2R3 P301L

Cells expressing mclover3-Tau187-P301L seeded with jR2R3-P301L fibrils

jR2R3-P301L acts as a prion: propagates the strain

Prof. Ken Kosik, UCSB

Cells seeded with jR2R3-P301L fibrils undergo division and propagate aggregates to daughter cells

Double Electron-Electron Resonance (DEER) Spectroscopy cannot distinguish between wild type and mutant

Water Triplet Distribution

