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IDPs have different regulators

BR:        (Mutation/PTM)
CR:               (Salt), pH, crowding

Environment

IDPs rely on electrostatics, charges are topologically correlated

IDP  conformation can also be modulated by non-electrostatics

IDPs may also exhibit charge modulation



6R4G4B2B2B 6R4G4B2B2B

IDP sequence is critical



Sequence matters in IDP function

Ddx4N phase separates but Ddx4CS does not

Nott et al Mol Cell (2015)

indicating that we can readily recapitulate the organelles in vitro
(Figure 3B). By contrast, under identical conditions, the splicing
variant Ddx4N2 remained soluble, revealing that alternative
splicing can regulate the formation of organelles.

As the droplets formed in vitro appeared identical in form to
those observed in cells, FRAP experiments were performed
to determine if they also have similar physical characteristics
and internal structure. Using Ddx4YFP as a tracer in droplets
otherwise composed of Ddx4N1 (molar ratio of 1:60), 50%of fluo-
rescence signal intensity was recovered after approximately
1 min following photobleaching of a 10 mm diameter dense-
phase droplet (Figure 3C) corresponding to a diffusion coeffi-
cient of 4 ± 1 3 10!13 m2 s!1. Within experimental uncertainty,
this is identical to the value observed directly within live cells
(3 ± 1 3 10!13 m2 s!1; Figure 2A), indicating that the internal
structure and internal dynamics of the organelles formed both
in vivo and in vitro are highly similar.

Since Ddx4YFP organelles could be induced in cells by cold
shock (Figure 2B), the in vitro organelles were subject to thermal
perturbation. Using bright-field microscopy and a thermal stage,
a fully dispersed solution of Ddx4N1 (pH 8.0) at 50"C was cooled
at 4"C min!1 to 22"C. At 36"C, the solution became turbid and
droplets were observed to condense (Figure 3D). After equilibra-
tion at 22"C for 1 min, the sample was reheated to 50"C. As the

temperature was raised, the droplets were observed to dissolve.
Multiple cycles were repeated, revealing that the process is
reversible (Figure 3D). In both respects, the thermal cycle was
highly similar to that observed within cells.

Ddx4N1 Organelles Are Stabilized Predominantly by
Electrostatic Interactions
In the case where molecular chains attract each other, polymer
theory anticipates that, at high concentrations and low tempera-
tures, they will phase separate and form condensed droplets
suspended in solvent. By contrast, at high temperature, the
translational entropy of the free polymer will dominate and the
polymer will mix with solvent. As the temperature is lowered, a
‘‘bimodal’’ or ‘‘cloud point’’ is reached, TP, where favorable inter-
actions overcome the translational entropy loss, and droplets of
pure polymer will condense via a nucleated mechanism, as
quantitatively described by Flory-Huggins theory of phase sepa-
ration (Flory, 1942; Huggins, 1942). We measured TP for Ddx4N1

(Figure S4) as a function of protein concentration and ionic
strength, enabling the construction of a phase diagram (Fig-
ure 4A, points). At all ionic strengths examined, TP increases
with increasing Ddx4N1 concentration in a manner that is well
predicted by Flory-Huggins theory (Figure 4A, solid lines). The
transition temperatures were found to decrease as ionic strength
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Figure 4. Quantitative Analysis and Interpretation of the Ddx4N1 Phase Transition
(A) The temperature at which the phase transition is observed, TP, was determined as a function of protein concentration and ionic strength at pH 8. At a given

ionic strength, the Flory-Huggins model of polymer phase separation quantitatively describes each curve. This yields two fitting parameters, the enthalpy and

entropy changes of the transition, which report on the microscopic interactions between molecules.

(B) The interaction parameters varied in a predictable way with increasing salt. The enthalpic contribution to the interaction parameter (i) was found to decrease as

a function of increasing NaCl. This is quantitatively explained by fitting the curve to a screened coulomb potential (light blue, Equation S19). The non-ionic

component of the enthalpy is close to zero, !0.058 ± 0.137 kJ mol!1, the relative permittivity within the condense phase was 45 ± 13, and the average spacing

between opposite charges is 13 ± 2 Å. The entropic contribution to the interaction parameter (ii) decreases slightly with increasing salt, fitted to Equation S20. The

error bars represent the SE in the fitted parameters (Figure 4A).

(C) The entropy and enthalpy values are correlated, suggesting that when the interactions are destabilized at higher salt, the chains in the interior of the droplet

become more mobile. The error bars represent the SE in the fitted parameters (Figure 4A).

(D) Schematic representation of dissolution of the Ddx4 condensed phase and expansion of themonomer in the disperse phase through increasing ionic strength

or temperature. Ddx4N1 protein chains depicted as green lines. Transition point (Tp) is indicated with a dashed gray line. The ionic interactions within the droplets

are attenuatedwith increasing salt, as is the residual structure within the protein in the dispersed phase. Corresponding bright-field images are shown on the right.

Scale bar, 10 mm.
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indicating that we can readily recapitulate the organelles in vitro
(Figure 3B). By contrast, under identical conditions, the splicing
variant Ddx4N2 remained soluble, revealing that alternative
splicing can regulate the formation of organelles.

As the droplets formed in vitro appeared identical in form to
those observed in cells, FRAP experiments were performed
to determine if they also have similar physical characteristics
and internal structure. Using Ddx4YFP as a tracer in droplets
otherwise composed of Ddx4N1 (molar ratio of 1:60), 50%of fluo-
rescence signal intensity was recovered after approximately
1 min following photobleaching of a 10 mm diameter dense-
phase droplet (Figure 3C) corresponding to a diffusion coeffi-
cient of 4 ± 1 3 10!13 m2 s!1. Within experimental uncertainty,
this is identical to the value observed directly within live cells
(3 ± 1 3 10!13 m2 s!1; Figure 2A), indicating that the internal
structure and internal dynamics of the organelles formed both
in vivo and in vitro are highly similar.

Since Ddx4YFP organelles could be induced in cells by cold
shock (Figure 2B), the in vitro organelles were subject to thermal
perturbation. Using bright-field microscopy and a thermal stage,
a fully dispersed solution of Ddx4N1 (pH 8.0) at 50"C was cooled
at 4"C min!1 to 22"C. At 36"C, the solution became turbid and
droplets were observed to condense (Figure 3D). After equilibra-
tion at 22"C for 1 min, the sample was reheated to 50"C. As the

temperature was raised, the droplets were observed to dissolve.
Multiple cycles were repeated, revealing that the process is
reversible (Figure 3D). In both respects, the thermal cycle was
highly similar to that observed within cells.

Ddx4N1 Organelles Are Stabilized Predominantly by
Electrostatic Interactions
In the case where molecular chains attract each other, polymer
theory anticipates that, at high concentrations and low tempera-
tures, they will phase separate and form condensed droplets
suspended in solvent. By contrast, at high temperature, the
translational entropy of the free polymer will dominate and the
polymer will mix with solvent. As the temperature is lowered, a
‘‘bimodal’’ or ‘‘cloud point’’ is reached, TP, where favorable inter-
actions overcome the translational entropy loss, and droplets of
pure polymer will condense via a nucleated mechanism, as
quantitatively described by Flory-Huggins theory of phase sepa-
ration (Flory, 1942; Huggins, 1942). We measured TP for Ddx4N1

(Figure S4) as a function of protein concentration and ionic
strength, enabling the construction of a phase diagram (Fig-
ure 4A, points). At all ionic strengths examined, TP increases
with increasing Ddx4N1 concentration in a manner that is well
predicted by Flory-Huggins theory (Figure 4A, solid lines). The
transition temperatures were found to decrease as ionic strength
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Figure 4. Quantitative Analysis and Interpretation of the Ddx4N1 Phase Transition
(A) The temperature at which the phase transition is observed, TP, was determined as a function of protein concentration and ionic strength at pH 8. At a given

ionic strength, the Flory-Huggins model of polymer phase separation quantitatively describes each curve. This yields two fitting parameters, the enthalpy and

entropy changes of the transition, which report on the microscopic interactions between molecules.

(B) The interaction parameters varied in a predictable way with increasing salt. The enthalpic contribution to the interaction parameter (i) was found to decrease as

a function of increasing NaCl. This is quantitatively explained by fitting the curve to a screened coulomb potential (light blue, Equation S19). The non-ionic

component of the enthalpy is close to zero, !0.058 ± 0.137 kJ mol!1, the relative permittivity within the condense phase was 45 ± 13, and the average spacing

between opposite charges is 13 ± 2 Å. The entropic contribution to the interaction parameter (ii) decreases slightly with increasing salt, fitted to Equation S20. The

error bars represent the SE in the fitted parameters (Figure 4A).

(C) The entropy and enthalpy values are correlated, suggesting that when the interactions are destabilized at higher salt, the chains in the interior of the droplet

become more mobile. The error bars represent the SE in the fitted parameters (Figure 4A).

(D) Schematic representation of dissolution of the Ddx4 condensed phase and expansion of themonomer in the disperse phase through increasing ionic strength

or temperature. Ddx4N1 protein chains depicted as green lines. Transition point (Tp) is indicated with a dashed gray line. The ionic interactions within the droplets

are attenuatedwith increasing salt, as is the residual structure within the protein in the dispersed phase. Corresponding bright-field images are shown on the right.

Scale bar, 10 mm.
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Linking sequence to conformation and function

Sequence

Disordered  
conformation Function 

Hamiltonian (coarse grain) based theory



H = 

I 4I 3I 2I 1

+ + +
R13

R13

R12 R23

R23R12

e2 e2 e2
— —

chain connectivity electrostatics

two body

Three body repulsive

H based polymer theory can be useful



Theory can compute ensemble average end-to-end distance

⟨Ree⟩



H based polymer theory can describe charge correlation

sequence specificity

m
nqm qn

SCD =

βF(Ree) = − Sent(Ree) + Ωnon−elec(Ree) + Qelec f(Ree)

electrostatics



Theory captures all-atom simulation of toy sequences

SCD =
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Figure 4
(a) SCD captures variations in size (Rg in angstroms) obtained from all-atom Monte Carlo simulations for
30 sequences, each having 25 Es and 25 Ks arranged in different orders. (b) Equations 1 and 2 can be used to
predict the size (Ree = 〈r2ee〉1/2 in angstroms) dependence on ω2 (proxy for temperature or solution
conditions) for a typical choice of ω3 = 0.1, b = 3.8 Å, and l = 8 Å, lb = 7.2 Å. The difference between the
black curve (representing a sequence with alternating Es and Ks) and the red curve (a sequence with a block
of 25 Es followed by 25 Ks) highlights the effect of charge patterning revealed by the SCD embedded in the
Equation 2. Abbreviations: E, glutamic acid; K, lysine; SCD, sequence charge decoration.

the two-body short-range interaction with a constant term (i.e.,ωm, n ≈ ω2).Figure 4b shows end-
to-end distance as a function of mean-!eld ω2 for a !xed value of ω3 = 0.1 (for this typical choice
of ω3, see Reference 31). The difference in charge patterning (captured by SCD) is manifest in
the chain dimensions between two sequences having the same charge composition (25 glutamic
acids and 25 lysines) but different patterning (Figure 2). The variation in ω2 can be attributed to
changes in temperature or local solution condition inside the cell that can happen due to weak
nonspeci!c interactions (103).Figure 4 also shows that changing ω2 can cause a chain to undergo
a sharp transition in conformation.

2.2.2. Heuristic derivation of the sequence charge decoration metric. The functional
form of the SCD metric can be appreciated with a scaling argument. The variational calcula-
tion stipulates a quantity I, de!ned as I = 〈r2ee(Hr −Ht )〉 − 〈r2ee〉〈(Hr −Ht )〉 = 0 (30, 85), whereHr

is the Hamiltonian renormalized with the Gaussian form having effective bond length lr, and
Ht is the total form. The electrostatic contribution of the total Hamiltonian, de!ned as Hel

t ,
can be written as Hel

t =
∑

m,n qmqn/|Rm,n| (ignoring constants). We also note the decomposition
r2ee = r2n,m + r2m,n + r2n,1.With these two relationships, the relevant term in I from the electrostatics
becomes

∑

m,n

qmqn
〈
r2m,n

1
|rm,n|

〉
∝

∑

m,n

qmqn〈|rm,n|〉 ∝
∑

m,n

qmqn(m− n)1/2, 3.

where the last equality uses Gaussian chain (random walk) statistics, [〈|r2m,n|〉]1/2 = (m− n)1/2, ne-
glecting all of the prefactors. For rigorous derivations, readers should consult Reference 85. SCD
captures long-range correlations in the sequence, unlike the charge patterning metric κ (not to be
confused with the inverse Debye length introduced below) introduced by Das & Pappu (19). For
this reason, the two charge patterning metrics—although broadly correlated (85)—can differ in
their ability to capture trends such asRg variance in sequences having the same charge composition
but different patterning (55).
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Sawle and Ghosh (JCP 2015)

 Ghosh, Huihui, Phillips, Haider Annual Reviews of Biophysics (2022)



Modeling the Disordered Proteins (IDPs)



Experiment confirms predicted mutational hot spots
PKI-alpha—WT (7 positive and 14 negative charges)

ee, WTR < R ee, v4
Prediction

Experiment 
with Gruebele

 4 

 

MATERIALS AND METHODS 

General materials and methods. Molecular biology reagents were ordered from New England 
BioLabs (Ipswich, MA), Thermo Fisher Scientific (Waltham, MA), Integrative DNA Technologies 

 
Figure 1. Sequences shown on the diagram of states and the schematic of the FRET 
assay (a) diagram of states of proteins used in this study. The lower left half is the 
Uversky plot, representing the proteins according to their mean-residue hydropathies 
and net charge per residues (NCPRs). The upper right half plots the proteins 
according to their fraction of charged residues. The structures of PKIα and HYPK are 
predicted by AlphaFold2. Crk1 PDB ID: 2EYY (b) a cartoon representation of the 
FRET assay.  

 

Over 35 possibilities

PNAS 121, e2316408121 (2024)

PKI-alpha—v4 (3 positive and 18 negative charges)



Experiment confirms predicted mutational hot spots
HYPK-WT (22 positive and 31 negative charges)

HYPK-4K v2

MRRRGEIDMATEGDVKLELKTETSGPERPPEKPRKHDSGAADLERVTDYAKEKEIQSSNLETAMSVIGDRRSREQKAKQEREKELAKVTIK
KEDLELIMTKMEISRAAAERSLREHMGNVVEALIALTN

HYPK-4K v1
MRRRGEIDMATEGDVELELETETSGPERPPEKPRKHDSGAADLERVTDYAEEKEIQSSNLETAMSVIGDRRSREQKAKQEREKELAKVTIK
KEDLELIMTEMKISRAAAKRSLRKHMGNVVKALIALTN

ee, v1R < R ee, v2
Prediction

 16 

For HYPK, after converting four acidic residues to basic residues we get a net charge of -1. For 

this composition (26 basic residues and 27 acidic residues) we have 31465 different possible 

sequences. From this set, we have chosen the sequence (HYPKV1) with the lowest SCD (-2.72) 

which is expected to be more compact compared to the wild-type sequence (SCD = 1.0). We 

have also designed a second variant (HYPKV2) that has the highest SCD (-0.47) among all 

sequences with 26 positive and 27 negative charges (Figure S1). We expect HYPKV2 to be more 

expanded than HYPKV1 despite both having identical net charge based on their differences in 

SCD. This expectation is also consistent with high kappa (0.17) of HYPKV1 compared to low kappa 

(0.07) for HYPKV2. High value of kappa indicates stronger segregation among opposite charges 

in the sequence, yielding more compact chain dimension. We next carried out all-atom implicit 

solvent simulation (using CAMPARI; see methods) and find HYPKV1 (Ree = 4.3 nm) to be indeed 

more compact compared to HYPKV2 (9.4 nm) and wild type HYPK (11.1 nm). While SCD-based 

theoretical predictions and the simulations are done for the tag-free sequence, we have also 

simulated the two FP-labeled HYPK variants and found Ree of HYPKV1 to be 18.6 nm and 20.4 

nm for HYPKV2 [see SI TableS2]. This additional study ensured the expected trends are not 

altered by net charges on the fluorescent protein probes although the distances are higher than 

simulations done in isolation hinting at possible electrostatic repulsion between the FPs swelling 

overall chain dimension. After establishing the trends by theory and simulation (both in isolation 

and in the presence of FP), we again turned to experiment, made HYPKV1-FRET and HYPKV2-

FRET, and find that at all temperatures, HYPKV1-FRET is more compact than HYPKV2-FRET, 

 
 

Figure 4. Relative end-to-end distances are accurately predicted by SCD. FRET curves of 
the (a) PKIα variants and (b) HYPK variants are shown as a function of temperature. The 
legend includes a schematic of charge decoration of the variants.  

Over 31000 possibilities

PNAS 121, e2316408121 (2024)



Discovery of a marginal IDP and its sequence dependence

PNAS 121, e2316408121 (2024)



Salt as another regulator of conformation



How to model salt dependence ?

> 0 shrink < 0 expand

βF(Ree) = − Sent(Ree) + Ωnon−elec(Ree) + Q′ elec(Ree, cs)

Q′ elec(Ree, cs) ≈ A1 ∑
m

∑
n

qmqn(m − n)1/2 − A2c1/2
s ∑

m
∑

n

qmqn(m − n) + . . .

SCD SCDlowsalt



Experiment confirms the predicted trend

PNAS  2024  Vol. 121  No. 18  e2316408121 https://doi.org/10.1073/pnas.2316408121   7 of 9

environment, adding to the emerging view that some IDPs act as 
sensors of cellular chemistry (58, 59) and biology.

!e e"ect of charge screening on the chain expansion/contraction 
is reconciled by arguments regarding the net charge and charge pat-
terning of each IDP (Fig. 3 A–C). All three FRET- labeled proteins 
(HYPK only at su#ciently high temperature for disorder to domi-
nate) contract with charge screening, in line with net negative charge 
of HYPK and PKIα. It is possible that the negatively charged FPs 
(eGFP is −7 and mCherry is −6) further expand the IDPs relative to 
the tag- free variants due to additional electrostatic repulsion, and 
part of the chain contraction with charge screening is attributed to 
the e"ect of FP- FP repulsion, as seen in CAMPARI simulations 
(SI Appendix, Table S3). Nonetheless, we argue that the intrinsic 
properties of highly charged and relatively high dimension of HYPK 
and PKIα outweigh the e"ect of distant FP labels on FRET meas-
urements at least to observe relative trends. Although Crk1IDR is net 
neutral, all the folded domains %anking the IDR are negatively 
charged (eGFP, mCherry, SH2, and SH3), and the collapse can be 
attributed to charge- screened repulsion between folded domains. 
HYPK expansion at T < 50 °C with adding salt could be either caused 
by counterion condensation that shields the charged residues and 
changing the e"ective charge patterning of the sequence or by the 
increased secondary structure content of HYPK at lower tempera-
tures that could change the e"ective charge patterning of the 
sequence. Counterion condensation can also alter the nature of 
e"ective electrostatic interaction by charge reversal and/or formation 
of dipoles giving rise to attractive dipolar interactions and would 
require an advanced theory, not captured by SCD theory at present. 
!e e"ect of charge patterning, composition, and their coupling 

with screening on the conformation of the IDP (Fig. 3D) is captured 
by SCDlowsalt that correctly predicts the trend of PKIα and HYPK 
(at T > 50 °C).

To demonstrate the predictivity of SCD, we made charge- %ipped 
variants of PKIα and HYPK. We found the expansion or contrac-
tion of the Ree of IDP variants (PKIα variants at all T; HYPK 
variants at high T) correlates with SCD. Most notably, HYPKV1 
and HYPKV2 have equal net charge (−1), while having signi&cantly 
di"erent sizes that can only be explained by di"erent charge pat-
terning and not by overall charge: segregated charges in HYPKV1 
and well- mixed opposite charges in HYPKV2. Although there have 
been reports of the e"ect of charge patterning on the Rg and RH 
(14, 49, 50), our study is an experimental validation of the e"ect 
of charge patterning on a measure related to Ree. Furthermore, 
HYPKV2, despite having the same charge composition as HYPKV1, 
does not exhibit cooperative transition like HYPKV1, indicating 
that cooperativity is also sensitive to sequence patterning and not 
just to mean- &eld parameters such as net charge.

As a &nal validation for the sequence- dependent theoretical 
model, we measured the FRET curves of the variants at di"erent 
salt concentrations and found perfect correlation to SCDlowsalt 
values: All PKIα- FRET variants collapse with charge screening 
(positive SCDlowsalt), HYPKV1- FRET expands with charge screen-
ing (negative SCDlowsalt) while the scaling of HYPKV2- FRET is 
relatively insensitive to charge screening in line with a small value 
of SCDlowsalt. Overall, we show that the relative size of IDP variants 
is governed by electrostatics interactions and is accurately recon-
ciled by SCD and SCDlowsalt charge patterning metrics, also tested 
across di"erent segments of E- Cadherin in previous studies (60). 

Fig. 5.   Effect of charge screening is correctly predicted by SCDlowsalt. FRET curves of the (A) HYPKV1- FRET, (B) HYPKV2- FRET, (C) PKIαV2- FRET, (D) PKIαV3- FRET, and (E) 
PKIαV4- FRET variants are shown as a function of temperature and salt. As predicted by theory (SI Appendix, Fig. S2) and in line with experiment, charge screening 
contracts the chain at all temperatures for variants with positive SCDlowsalt (PKIαV2- FRET, PKIαV3- FRET, and PKIαV4- FRET) and expands the chain with negative 
SCDlowsalt (HYPKV1- FRET). The salt sensitivity of HYPKV2- FRET is negligible, supported by the small SCDlowsalt value of −1.3.
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SCDlowsalt = − 1.3SCDlowsalt = − 27

Ionic strength coupled to patterning modulates conformation



More patterning metrics arise describing intra-chain sizes

j

i

⟨Rij⟩



βF(Rij) = . . . . . . . + Qelec,ij f(Rij)

More patterning metrics arise describing intra-chain sizes



IDPs have sequence specific distance profiles

SCDM maps reveal molecular blue print



Sequence Charge Decoration Matrix is IDP’s 
molecular blueprint
Role in IDP function



•  Sequence alignment does not work 

• Structure alignment does not work 

Challenges of modeling IDP function



Functionally similar IDPs lack sequence similarity

Zarin, Tsai, Ba and Moses PNAS 2017



Ste50 wt Normal, Ste50 5A Abnormal, L klu normal

Functionally similar IDPs lack sequence similarity

Zarin, Tsai, Ba and Moses PNAS 2017



Functionally similar IDPs lack sequence similarity

Zarin, Strome, Ba, Alberti,  Forman-Kay, Moses eLife 2019

SCCharge
SC5A

LKCharge

PEX5
RAD26



•  Sequence alignment does not work 

• Structure alignment does not work

Challenges of modeling IDP function

What about using mathematical metric as IDP blueprint ?



Can we use SCDM to classify IDPS ?

What about using mathematical metric as IDP blueprint ?



SCDM can detect functionally similar STE50

Huihui Ghosh (Biophysical Journal 2021)

SCCharge

SC5A

LKCharge

PEX5

RAD26

......   SCDM  ......ij

......   SCDM  ......ij

......   SCDM  ......ij

......   SCDM  ......ij

......   SCDM  ......ij



Huihui Ghosh Biophysical Journal 120, 1860 (2021)

SCCharge

SC5A

LKCharge

PEX5

RAD26

SCDM can detect functionally similar STE50



RAD26

SCDM can detect functionally similar STE50

LKCharge PEX5 SCCharge SC5A

Huihui Ghosh (Biophysical Journal 2021)

Functional non-functional



SCDM can detect functionally similar PSC-CTR

Huihui Ghosh (Biophysical Journal 2021)Huihui Ghosh (Biophysical Journal 2021)



How to model sequence dependent 
non-electrostatics ?



We can use ML to train non-electrostatics H

We build a new machine learning model to learn an 
 analytically tractable Hamiltonian

  There are available datasets of IDPs with 𝑅𝑒𝑒  from   
 simulation. We calculate 𝜔2 from this data:

 ቐ…
…

      ቐ
𝑅𝑒𝑒
…
…

                            ቐ
𝜔2
…
…

 We use a convolutional neural network (CNN) to learn  
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Physics based ML also reproduces experimental data

Figure 5: PML well reproduces experimental measurement of radius of gyration

(Rg) across 64 different protein sequences. PML prediction was made assuming !3 =
0.2 and using CNNT to estimate !2. RPML

g was estimated from
p
(hR2

eei/6). We trained ten
models, each with different training, validation and test set. !2 and subsequently Rg values
were calculated from these models and averaged to yield R

PML
g . Error bars are standard

deviation of the ten Rg values. Different colors denote data reported by different groups
details of which can be found in SI.
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and ρc = nc/Ω, whereΩ is the solution volume. Although only a sim-
ple system with at most two species of small ions is analyzed here for
conceptual clarity, our theory can be readily expanded to account for
multiple species of small ions.

Details of our formulation are given in Appendixes A and B.
Here, we provide the key steps in the derivation. Let F be the total
free energy of the system. Then, f ≡ Fl3/(kBTΩ) is free energy in
units of kBT per volume l3, where l is the bare Kuhn length, kB is
the Boltzmann constant, and T is the absolute temperature. In our
theory,

f = −s + fion + fp + f0, (1)

where s is the mixing entropy, f ion and f p are the interactions among
the small ions and involving the polymers, respectively, that arise
from density fluctuations, and f 0 is the mean-field excluded volume
interaction, all expressed in the same unit as f. The mixing entropy,
which accounts for the configurational freedom of the solutes, takes
the Flory-Huggins form, viz.,

− s = ϕm
N

lnϕm + ϕs lnϕs + ϕc lnϕc + ϕw lnϕw , (2)

where ϕm, ϕs, ϕc, and ϕw = 1 − ϕm − ϕs − ϕc are volume fractions (ϕ
= ρl3), respectively, of polymers, salt ions, counterions, and solvent
(water for IDP systems). Following Muthukumar, the charge of each
small ion is taken to be distributed over a finite volume comparable
to that of a monomer. The corresponding interaction free energy
among the small ions is73

fion = − 1
4π �ln(1 + κl) − κl + 1

2
(κl)2�, (3)

where 1�κ = 1��4πlB(z2s ρs + z2c ρc) is the Debye screening length
and lB is the Bejurrm length. Polymers interact via a κ-dependent
screened Coulomb potential and a uniform excluded-volume repul-
sion with strength v2. The origin of this repulsive term is to be
understood as an effective interaction involving both the polymer
and solvent. By setting v2 repulsive, we imply that the polymer is in
a good solvent. These interactions are contained in the expression

Up[R] = 1
2

np�
α,β=1

N�
τ,�=1
�����
στσ�e−κ�Rα,τ−Rβ,� �
�Rα,τ − Rβ,�� + v2δ3�Rα,τ − Rβ,�������, (4)

where Rα ,τ is the position of the τth monomer in the αth poly-
mer. The Up form facilitates the formulation in terms of den-
sity fields below. For this purpose, the divergent self-interaction
terms in Up are either regularized subsequently or inconsequen-
tial because they do not contribute to phase-separation properties.
Chain connectivity of the polymers is enforced by the potential

T [R] = 3
2l2

np�
α=1

N−1�
τ=1(Rα,τ+1 − Rα,τ)2. (5)

Thus, aside from a combinatorial factor that has already been
included in Eq. (2), the partition function involving the polymers
is given by

Zp = �
np�
α=1

N�
τ=1 dRα,τe−T [R]−Up[R]. (6)

Now, by applying the Hubbard-Stratonovich transformation
and converting real-space to k-space variables, we convert the
coordinate-space partition function in Eq. (6) to a k-space partition
function30,31 involving a charge-density field ψ and a matter-density
field w, viz.,

Zp = Z0Z
′
p, Z

′
p = � �

k≠0

�
νk
v2

dψkdwk
2πΩ e−H [ψ,w], (7)

where Z0 = exp[−v2(Nnp)2�2Ω] is the factor for k = 0,

H [ψ,w] = 1
2Ω�k≠0�νkψ−kψk +

w−kwk
v2
� − np lnQp[ψ,w], (8)

with νk ≡ k2�(4πlB) + (z2s ρs + z2c ρc), the scalar k ≡ |k|, Qp[ψ,w]= ∫ D[R] exp(−Hp[ψ,w]) is the single-polymer partition function
with D[R] ≡ ∏N

τ=1 dRτ (the chain label α in R is dropped since the
integration here is only over one chain), and

Hp[ψ,w] = 3
2l2

N−1�
τ=1(Rτ+1 − Rτ)2 + i

Ω�k≠0
N�
τ=1(στψk + wk)e−ik⋅Rτ .

(9)

The total interaction free energy involving the polymers in the unit
of Eq. (1) is −(l3�Ω) lnZp, which we express as the sum of a density-
fluctuation contribution fp = −(l3�Ω) lnZ′p and a mean-field con-
tribution f0 = −(l3�Ω) lnZ0 = 1

2v2ρ
2
m. The f 0 term involves nei-

ther small ions nor electrostatic interactions because the excluded
volumes of the small ions are not considered beyond the incom-
pressibility condition in Eq. (2) and the solution system as a whole is
neutral.

We evaluateZ′p in Eq. (7) perturbatively by expandingH [ψ,w]
to the second order in density,

H [ψ,w] ≈ 1
2Ω�k≠0�ψ−k w−k��

νk + ρmξk ρmζk
ρmζk v2

−1 + ρmgk
��ψk
wk
�, (10)

where gk, ξk, and ζk are monomer density-monomer density,
charge-charge, and monomer density-charge correlation functions
in k-space, and ��| and |�� are, respectively, row and column
vectors. Z′p can then be calculated as a Gaussian integral to yield

fp = − l3 lnZ′pΩ

= l3

2 � d3k(2π)3 ln�1 + ρm� ξkνk + v2gk� + v2
νk
ρ2m�ξkgk − ζ2k��. (11)

Evaluation of gk, ξk, and ζk requires knowledge of the single-polymer
Qp [Eq. (8)], which, in general, depends on the sequence charge pat-
tern. fG-RPA makes the simplifying assumption that Qp is that of
Gaussian chains with a fixed l, i.e., assume that the second term in
Eq. (9) vanishes. As introduced above, here we use a renormalized
Kuhn length l1 = xl to better account for the effects of interactions
onQp by making the improved approximation
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signaling), also showed elevated disorder, underlying its importance for cell cycle regulation.

CDKs might act as MLO ‘dissolvases’. Given the results noted above, and the switch-like reorgan-
isation of the cell at mitotic entry when most of the molecular condensates dissolve, we hypothesised
that CDKs evolved to phosphorylate a wide variety of IDRs and control phase separation during the cell
cycle, aided by other more specific cell cycle kinases. This is consistent with the observation that CDKs
can regulate the organisation and assembly of specific MLOs. For example, the phosphorylation of the
FG repeat-rich N-terminus of the nucleoporin NUP98 by CDK1 is crucial for nuclear pore disassembly,
a key event for nuclear disintegration in mitosis [39], and in budding yeast, CDK1 (Cdc28) regulates the
stability of stress granules [40]. Replication foci have not yet been shown to have the characteristics
of phase-separated condensates in vivo, though such a hypothesis is also consistent with experimen-
tal data. Metazoan Orc1, Cdc6 and Cdt1 all contain IDRs, where multiple CDK phosphorylation sites
are located, can phase separate in vitro, and can also recruit MCM proteins, that by themselves do not
phase separate [41–43]. Importantly, a high CDK/PP2A activity ratio inhibits DNA replication and blocks
association of replication factors with chromatin [23], which might involve dissolution of replication foci.
This highlights a long-standing conundrum: how can a single CDK activity both promote (in S-phase)
and inhibit (in mitosis) DNA replication? The only plausible explanation is that different levels of CDK
activity at different points of the cell cycle translate into different molecular outputs with the same sys-
tem components. Invoking regulation of MLO formation in this context might help explain how CDKs
control firing of clusters of origins and how replication programs are organised at a higher-level scale.

CDK targets and the MLO proteome have significant overlap. To test the hypothesis that CDKs
act as general MLO ‘dissolvases’, we assembled a human MLO proteome and found that over one third
of these proteins are CDK targets [16]. These included major condensate components: coilin of Cajal
bodies, nucleoporins (NUP53, NUP98, NUP153, ELYS, and others); nucleolin and nucleophosmin of
nucleoli; 53BP1, RIF1 and MDC1 of 53BP1 bodies; promyelocytic leukemia protein of PML bodies; and
MED1, which drives phase separation of the transcriptional apparatus.

Sequence dependent rG-RPA theory provides high throughput modeling of phase separation
of the proteome. Studying the effects of CDK-mediated phosphorylation of many proteins is not
feasible by biochemical approaches or atomic (or even coarse grain) simulation. To overcome this
obstacle, we employed analytical modeling. We took advantage of a new theory called renormalised
Gaussian Random Phase Approximation (rG-RPA [44], pioneered by PI Ghosh). This theory starts with
coarse-grain sequence dependent many-chain interacting Hamiltonian. After integrating out degrees of
freedom and truncating density fluctuations to the second order, typical in random phase approximation
(RPA), the non-dimensional free energy (�f ) of a polymer solution is given by
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where the first four terms are the entropies of mixing with �, �s, �c, and �w being the volume fractions
(related to density) of the polymer, salt, counterions, and water respectively, k is non-dimensional wave
vector, ⌫k = k2/(4⇡lB) + (�s + �c), is the inverse of the Fourier transform of screened coulomb
potential accounting for salt effect, lB (Bjerrum length) is inversely proportional to temperature, N is
the number of amino acids. Ion fluctuations, self-energy subtraction terms (needed to avoid divergence
for formulational convenience without any impact on the phase diagrams) and mean field (k = 0 term)
are also present but not shown here for brevity (see [44] for more). The interaction term (last term in
equation 1) embeds two sequence dependent quantities (⇠k, ⇣k) and gk defined as,
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where, qis are charges (1 for arginine, lysine, -1 for aspartic, glutamic acid, and 0 for others) and ! is
a residue independent parameter describing non-electrostatic interactions at a mean-field level. Phos-

Sequence dependence
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B. Salt-free rG-RPA account of pH-dependent LLPS
To address pH dependence under salt-free conditions, we apply

rG-RPA to an example of a near-neutral polyampholyte under neu-
tral pH, namely, the N-terminal IDR of the DEAD-box helicase
Ddx4 (IDR denoted as Ddx4N1) and its charge-scrambled variant
Ddx4N1CS which has the same amino acid composition as Ddx4N1
by a different sequence charge pattern.4 The sequences are stud-
ied at neutral and acidic pH. We refer to the resulting charge pat-
terns as (in obvious notation) Ddx4N1pH7, Ddx4N1CSpH7, Ddx4N1pH1, and
Ddx4N1CSpH1, where pH7 and pH1 are approximate pH values sym-
bolizing neutral and acidic conditions. For the pH7 sequences, each
of the 24 arginines (R) and 8 lysines (K) of Ddx4N1 and Ddx4N1CS
is assigned a +1 charge, each of the 18 aspartic acids (D) and 18 glu-
tamic acids (E) is assigned a −1 charge, and the 2 histidines (H) carry
zero charge. For the pH1 sequences, because the pH is lower than
the pKa of the acidic amino acids (3.71 for D and 4.15 for E), they
are not ionized and thus carry zero charge but each K or R or H
(pKH = 6.04) carries a +1 charge [Fig. 2(a), K, R in blue; H in cyan].

FIG. 2. LLPS at neutral and acidic pH. (a) Charge sequences of Ddx4N1 and
Ddx4N1CS (blue/cyan: +1, red: −1, white: 0) and their (b) rG-RPA and (c) fG-RPA
phase diagrams.

Thus, Ddx4N1pH7 and Ddx4N1CSpH7 are near-neutral polyampholytes,
whereas Ddx4N1pH1 and Ddx4N1CSpH1 are polyelectrolytes although
these four sequences—unlike those in Fig. 1—contains also many
uncharged monomers.

Figure 2(b) indicates that the rG-RPA-predicted Tcr is much
lower under acidic than under neutral conditions and that Tcr
of Ddx4N1 is always higher than that of Ddx4N1CS under both
pH conditions, underscoring that sequence-specific effects influ-
ence the LLPS of not only neutral and nearly neutral polyam-
pholytes28,55–57,79 but also polyelectrolytes. Intriguingly, inverse
S-shaped coexistence curves are seen in Fig. 2(b) not only for neutral
pH (blue curves) but also for acidic pH (orange curves). This fea-
ture is characteristic of polyampholytes [Fig. 1(b)] but not uniformly
charged polyelectrolytes [Fig. 1(a)]. This result suggests that inverse
S-shaped phase boundaries can arise, in general, from a heteroge-
neous sequence charge pattern because it leads to the simultane-
ous presence of both attractive and repulsive interchain interactions
(which can be counterion-mediated in the case of polyelectrolytes)
and therefore allows for condensed-phase configurations with lower
densities.28

As a control, fG-RPA results are shown in Fig. 2(c). In contrast
to rG-RPA, fG-RPA predicts that the l�(lB)cr value (proportional to
Tcr) of both Ddx4N1 and Ddx4N1CS at low pH is higher than that of
Ddx4N1CS at neutral pH and that the critical volume fractions at low
pH are significantly lower than those at neutral pH. Although these
differences between fG-RPA and rG-RPA predictions for the Ddx4
IDR remain to be conclusively tested by experiment, the low-pH
fG-RPA phase diagrams here [orange curves in Fig. 2(c)] share sim-
ilar features with the fG-RPA phase diagrams for polyelectrolytes in
Fig. 1(c) which, as discussed above, are at odd with trends observed
in prior theories and experiments. The fG-RPA results and those
obtained using our earlier, simple formulation of RPA55 are very
similar (Fig. 3).
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PML can predict LLPS propensity for non-charge mutations

To test the predictions from the lattice-based
stickers-and-spacers model, we performed in
vitro experiments to quantify the temperature-
dependent phase behavior of the A1-LCD and
designed variants. Monitoring the temperature-
dependent, reversible phase separation of the
A1-LCD (fig. S11A) provided the basis for accu-
rate mapping of full binodals. Fluorescence
microscopy of a small proportion of labeled
A1-LCD in the presence of unlabeled A1-LCD
showed droplets that diffuse and fuse to form
larger droplets (Fig. 3C and movie S5), provid-
ing evidence for LLPS. We used fluorescence
correlation spectroscopy (FCS) to probe the mo-
bility of proteinmolecules inside andoutside the
droplets (Fig. 3D). The increase in the correla-
tion time of the protein molecules reflects the
viscosity increase due to the concentration
(fig. S11B). Amplitudes of the correlation curve,
as well as the fluorescence intensities, allowed
us to determine the concentrations and the
molecular brightness of the diffusing species
in the coexisting dilute and dense phases (Fig.

3E and fig. S11, C to F). The concentration of
A1-LCD in its dense phase is approximately
three orders of magnitude larger than its con-
centration in the dilute phase (Fig. 3E and table
S1). Analysis of the brightness of the diffusing
species indicates that A1-LCDmolecules within
the droplet are freely diffusing monomers.
Next, we obtained experimentally derived

binodals, achieved for only a small number of
disordered LCDs (18, 35), by measuring the
concentrations (c) within coexisting dilute and
dense phases as a function of temperature (Fig.
3, E and F). For WT, Aro-, and Aro+ variants,
coexistence points in the (T,c) space were
mapped to quantify the locations of the dilute
and dense phase arms of binodals (Fig. 3F and
fig. S12A). To locate the critical point, we fit the
measured binodals using a modified Flory-
Hugginsmodel for phase separation that includes
two- and three-body interaction coefficients (36)
to estimate the critical temperatures (Tc) for
each system. The quality of the fits shown in
Fig. 3E for the WT A1-LCD and in Fig. 3F for

Aro- and Aro+ suggest that the PLDs can be ap-
proximated as effective homopolymers. Using
the predicted values for Tc as a guide, we mea-
sured coexistence points close to the predicted
critical temperatures using a cloud-point as-
say (see fig. S12, B and C) and found the pre-
dicted values (for WT A1-LCD and Aro-) to be
within a few degrees of the measured values
(Fig. 3, E and F).
The measured binodals of WT A1-LCD were

also fit to data from simulations that use the
lattice-based stickers-and-spacersmodel (Fig. 3,
E and F). Fits to the experimental data for
the WT A1-LCD were used to rescale the sim-
ulation temperature to units of degrees Celsius
(Fig. 3E) and to convert concentrations from
volume fractions intomolar units. This allowed
us to compare calculated binodals for the
WT, Aro-, and Aro+ sequences to the binodals
extracted from experiments (Fig. 3F). These
comparisons highlight the phenomenological
accuracy of the stickers-and-spacers model. We
also calculated the binodal for Aro--, and these
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Fig. 3. Sticker valence directly determines the phase behavior of the A1-LCD. (A) Schematic
representation of the stickers-and-spacers model. (B) Correlation between Rg from coarse-grained stickers-and-
spacers simulations with values obtained from SEC-SAXS. Error bars, which indicate the quality of fit to the
MFF (Fig. 2D), are shown if greater than marker size. (C) Overlaid differential interference contrast (DIC) and
fluorescence images of LCD droplets fusing over the course of 20 s (see movie S5) (top). The scale bar
represents 50 mm. Snapshots from lattice-based stickers-and-spacers simulations (bottom) are shown.
(D) Amplitude-normalized FCS curves for WT A1-LCD before phase separation (orange) and in the dilute (red)
and dense (green) phases. tD, the fluorescence decorrelation time. (E) Complete binodal for the WT A1-LCD
computed from the lattice-based stickers-and-spacers (S&S) simulations (circles) and three different types of
experiments: centrifugation followed by ultraviolet (UV) absorbance (triangles), cloud point (inverted triangles),
and FCS or fluorescence intensity (squares) (see figs. S11, B and C, and S12). The solid line is a fit from
Flory-Huggins theory to the experimental UV absorbance data. (F) Complete binodals as presented in (E) for the
Aro+, WT [shown in (E)], and Aro- variants. For Aro--, the binodal is from simulations that use the lattice-based
stickers-and-spacers model (solid circles) and fits based on Flory-Huggins theory to simulation results. (G) The
correlation between the experimentally reported saturation concentrations and those calculated by stickers-and-
spacers simulations for WT and three FUS variants with deleted RACs. (37). r, Pearson correlation coefficient.
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Beyond monopole electrostatics is needed
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FIG. 1: Sequence dependent synergistic and antagonistic electrostatic interactions among native charges and dipoles
formed by counterion condensation, resulting in charge and conformational regulation in IDPs. Sequence 1 (S1) has
all negative charges (red) on the backbone, but is subjected to an optimization between repulsive charge-charge
interaction (Ucc) between fully ionized groups and attractive charge-dipole (�Ucd) and dipole-dipole (�Udd)
interactions involving ion-pairs formed by counterions. Sequences 2 (S2) and 3 (S3) have equal number of positive
and negative charges but distributed di↵erently. When the sequence has opposite charges, there is additional
attractive charge-charge interaction (�Ucc) that is synergistic with the attractive interactions from dipoles and
antagonistic with repulsive charge-charge interaction between similar charges. Dipoles can also form due to
complexation between oppositely charged amino acids in the chain, in addition to those from counterion
condensation. If the sequence is well mixed (S2), the propensity to form intra-chain dipole is small, compared to
sequence S3 where charges are well segregated. Small light circles are background ions, bold circles denote
counterions that condense on the polymer chain forming dipoles (black arrows with yellow shading), big circles are
ionizable residues on the protein backbone.

units (repulsive and attractive ucc, attractive ucd and udd), and chain conformational entropy control charge-regulation
and the resultant protein conformation. As an example of the significant role played by sequence [18], consider S3
which has blocks of similar charges (S3) which can favor a string of dipoles due to intra-chain ion-pair formation
when oppositely charged blocks come in close proximity. This in turn puts additional contributions to conformational
entropy and energetics of dipolar domains.

All of the above contributing factors, namely, interactions among charges and dipoles, hydrophobic interactions among
all amino acids in the protein, and the accompanying conformational entropy, must be considered under di↵erent
conditions of temperature and ionic strength in a self-consistent manner towards a fundamental understanding of net
charge and conformation of IDPs. This is the primary objective of the present theory.

We provide a unified theory that accounts for these synergistic/antagonistic factors in a self-consistent manner to
determine the degree of ionization (of positive and negative charges), and size of the chain (average end-to-end
distance) as functions of sequence charge patterning including response to salt and temperature. In doing so, we also
provide insights to the well known problem of charge regulation but in polyampholytes and proteins [18–20]. We build
this unifying theory on two well developed but separate lines of investigation: one that models the degree of ionization
of homopolyelectrolyte [20–27] and the other determining sequence e↵ects on the conformation of heteropolymers with
di↵erent types of charges assuming full ionization [7, 8, 10, 28–30].

We first benchmark the validity of our theory against available data of charge reduction [19] and chain dimension of
Prothymosin-alpha measured in single molecule experiments [31]. Using parameters derived from this experiment,
we make predictions for ionization and size for di↵erent heteropolymer sequences including real IDPs. We find
ionization and conformation both depend on charge patterning. We also find IDP sequences can coexist in two states
in the charge-conformation landscape giving rise to a cooperative transition with temperature. The origin of the
cooperativity is primarily due to sequence dependent interaction between charges and dipoles, an outcome of partial
ionization balancing entropic and enthalpic contributions to the free energy. Consequently, the emergence of the
coexistence and the gap between the two stable solutions/states (in ionization and chain dimension space) can be
controlled by modulating charge patterns in the sequence while keeping the same composition. This e↵ect manifests in
a non-trivial way in the context of phosphorylation, which adds negative charges on Serine/Threonine. We notice that
while some phosphorylation sites cause only modest changes in conformation, other phosphorylation sites maintaining
the same charge composition can cause drastic changes in ionization and conformation due to appearance of the two
coexistent phases. We envision that our finding of dipolar forces and sequence e↵ects on IDP conformations will
enhance the growing body of research demonstrating the critical role of electrostatics in the function of IDPs [32–38].
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FIG. 1: Sequence dependent synergistic and antagonistic electrostatic interactions among native charges and dipoles
formed by counterion condensation, resulting in charge and conformational regulation in IDPs. Sequence 1 (S1) has
all negative charges (red) on the backbone, but is subjected to an optimization between repulsive charge-charge
interaction (Ucc) between fully ionized groups and attractive charge-dipole (�Ucd) and dipole-dipole (�Udd)
interactions involving ion-pairs formed by counterions. Sequences 2 (S2) and 3 (S3) have equal number of positive
and negative charges but distributed di↵erently. When the sequence has opposite charges, there is additional
attractive charge-charge interaction (�Ucc) that is synergistic with the attractive interactions from dipoles and
antagonistic with repulsive charge-charge interaction between similar charges. Dipoles can also form due to
complexation between oppositely charged amino acids in the chain, in addition to those from counterion
condensation. If the sequence is well mixed (S2), the propensity to form intra-chain dipole is small, compared to
sequence S3 where charges are well segregated. Small light circles are background ions, bold circles denote
counterions that condense on the polymer chain forming dipoles (black arrows with yellow shading), big circles are
ionizable residues on the protein backbone.

units (repulsive and attractive ucc, attractive ucd and udd), and chain conformational entropy control charge-regulation
and the resultant protein conformation. As an example of the significant role played by sequence [18], consider S3
which has blocks of similar charges (S3) which can favor a string of dipoles due to intra-chain ion-pair formation
when oppositely charged blocks come in close proximity. This in turn puts additional contributions to conformational
entropy and energetics of dipolar domains.

All of the above contributing factors, namely, interactions among charges and dipoles, hydrophobic interactions among
all amino acids in the protein, and the accompanying conformational entropy, must be considered under di↵erent
conditions of temperature and ionic strength in a self-consistent manner towards a fundamental understanding of net
charge and conformation of IDPs. This is the primary objective of the present theory.

We provide a unified theory that accounts for these synergistic/antagonistic factors in a self-consistent manner to
determine the degree of ionization (of positive and negative charges), and size of the chain (average end-to-end
distance) as functions of sequence charge patterning including response to salt and temperature. In doing so, we also
provide insights to the well known problem of charge regulation but in polyampholytes and proteins [18–20]. We build
this unifying theory on two well developed but separate lines of investigation: one that models the degree of ionization
of homopolyelectrolyte [20–27] and the other determining sequence e↵ects on the conformation of heteropolymers with
di↵erent types of charges assuming full ionization [7, 8, 10, 28–30].

We first benchmark the validity of our theory against available data of charge reduction [19] and chain dimension of
Prothymosin-alpha measured in single molecule experiments [31]. Using parameters derived from this experiment,
we make predictions for ionization and size for di↵erent heteropolymer sequences including real IDPs. We find
ionization and conformation both depend on charge patterning. We also find IDP sequences can coexist in two states
in the charge-conformation landscape giving rise to a cooperative transition with temperature. The origin of the
cooperativity is primarily due to sequence dependent interaction between charges and dipoles, an outcome of partial
ionization balancing entropic and enthalpic contributions to the free energy. Consequently, the emergence of the
coexistence and the gap between the two stable solutions/states (in ionization and chain dimension space) can be
controlled by modulating charge patterns in the sequence while keeping the same composition. This e↵ect manifests in
a non-trivial way in the context of phosphorylation, which adds negative charges on Serine/Threonine. We notice that
while some phosphorylation sites cause only modest changes in conformation, other phosphorylation sites maintaining
the same charge composition can cause drastic changes in ionization and conformation due to appearance of the two
coexistent phases. We envision that our finding of dipolar forces and sequence e↵ects on IDP conformations will
enhance the growing body of research demonstrating the critical role of electrostatics in the function of IDPs [32–38].
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formed by counterion condensation, resulting in charge and conformational regulation in IDPs. Sequence 1 (S1) has
all negative charges (red) on the backbone, but is subjected to an optimization between repulsive charge-charge
interaction (Ucc) between fully ionized groups and attractive charge-dipole (�Ucd) and dipole-dipole (�Udd)
interactions involving ion-pairs formed by counterions. Sequences 2 (S2) and 3 (S3) have equal number of positive
and negative charges but distributed di↵erently. When the sequence has opposite charges, there is additional
attractive charge-charge interaction (�Ucc) that is synergistic with the attractive interactions from dipoles and
antagonistic with repulsive charge-charge interaction between similar charges. Dipoles can also form due to
complexation between oppositely charged amino acids in the chain, in addition to those from counterion
condensation. If the sequence is well mixed (S2), the propensity to form intra-chain dipole is small, compared to
sequence S3 where charges are well segregated. Small light circles are background ions, bold circles denote
counterions that condense on the polymer chain forming dipoles (black arrows with yellow shading), big circles are
ionizable residues on the protein backbone.

units (repulsive and attractive ucc, attractive ucd and udd), and chain conformational entropy control charge-regulation
and the resultant protein conformation. As an example of the significant role played by sequence [18], consider S3
which has blocks of similar charges (S3) which can favor a string of dipoles due to intra-chain ion-pair formation
when oppositely charged blocks come in close proximity. This in turn puts additional contributions to conformational
entropy and energetics of dipolar domains.

All of the above contributing factors, namely, interactions among charges and dipoles, hydrophobic interactions among
all amino acids in the protein, and the accompanying conformational entropy, must be considered under di↵erent
conditions of temperature and ionic strength in a self-consistent manner towards a fundamental understanding of net
charge and conformation of IDPs. This is the primary objective of the present theory.

We provide a unified theory that accounts for these synergistic/antagonistic factors in a self-consistent manner to
determine the degree of ionization (of positive and negative charges), and size of the chain (average end-to-end
distance) as functions of sequence charge patterning including response to salt and temperature. In doing so, we also
provide insights to the well known problem of charge regulation but in polyampholytes and proteins [18–20]. We build
this unifying theory on two well developed but separate lines of investigation: one that models the degree of ionization
of homopolyelectrolyte [20–27] and the other determining sequence e↵ects on the conformation of heteropolymers with
di↵erent types of charges assuming full ionization [7, 8, 10, 28–30].

We first benchmark the validity of our theory against available data of charge reduction [19] and chain dimension of
Prothymosin-alpha measured in single molecule experiments [31]. Using parameters derived from this experiment,
we make predictions for ionization and size for di↵erent heteropolymer sequences including real IDPs. We find
ionization and conformation both depend on charge patterning. We also find IDP sequences can coexist in two states
in the charge-conformation landscape giving rise to a cooperative transition with temperature. The origin of the
cooperativity is primarily due to sequence dependent interaction between charges and dipoles, an outcome of partial
ionization balancing entropic and enthalpic contributions to the free energy. Consequently, the emergence of the
coexistence and the gap between the two stable solutions/states (in ionization and chain dimension space) can be
controlled by modulating charge patterns in the sequence while keeping the same composition. This e↵ect manifests in
a non-trivial way in the context of phosphorylation, which adds negative charges on Serine/Threonine. We notice that
while some phosphorylation sites cause only modest changes in conformation, other phosphorylation sites maintaining
the same charge composition can cause drastic changes in ionization and conformation due to appearance of the two
coexistent phases. We envision that our finding of dipolar forces and sequence e↵ects on IDP conformations will
enhance the growing body of research demonstrating the critical role of electrostatics in the function of IDPs [32–38].
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• Combinatorial entropy of ionization  

• Counterion translational entropy 

• Ion-pair formation equilibrium 

• Chain free energy 

Prothymosin-alpha measured in single-molecule experiments 
(33). Using parameters derived from this experiment, we make 
predictions for ionization and size for different heteropolymer se-
quences including real IDPs. We !nd ionization and conformation 
both depend on charge patterning. We also !nd IDP sequences can 
coexist in two states in the charge-conformation landscape giving 
rise to a cooperative transition with temperature. The origin of the 
cooperativity is primarily due to sequence dependent interaction 
between charges and dipoles, an outcome of partial ionization 
balancing entropic and enthalpic contributions to the free energy. 
Consequently, the emergence of the coexistence and the gap be-
tween the two stable solutions/states (in ionization and chain di-
mension space) can be controlled by modulating charge patterns 
in the sequence while keeping the same composition. This effect 
manifests in a nontrivial way in the context of phosphorylation, 
which adds negative charges on Serine/Threonine. We notice 
that while some phosphorylation sites cause only modest changes 
in conformation, other phosphorylation sites maintaining the 
same charge composition can cause drastic changes in ionization 
and conformation due to appearance of the two coexistent 
phases. We envision that our !nding of dipolar forces and se-
quence effects on IDP conformations will enhance the growing 
body of research demonstrating the critical role of electrostatics 
in the function of IDPs (34–40).

Model
Degrees of ionization
We consider an IDP consisting of N residues, with N+ positive and 
N− negative charges upon full ionization (caused by release of 
counterions). However, counterions and/or salt ions can condense 
from solution onto some charged residues, neutralizing those 
charges and forming local dipoles. The partial ionization is mod-
eled by introducing mean degrees of ionization for each charge 
type, α± ∈ [0, 1]. Each residue (m) is assigned a charge qm = α+, 
qm = −α−, or qm = 0 depending on its classi!cation (acidic/basic/ 
neutral), generalizing earlier work on homopolymers (17, 27, 28). 
Correspondingly, degrees of condensation are given by 1 − α±, 
and residue (m) speci!c dipole fraction is de!ned as dm = 1 − α+, 
dm = 1 − α−, or dm = 0. Net charge of the entire chain is given by 
qnet = N+α+ − N−α−.

Charge composition, patterning, and degrees of ionization dic-
tate IDP size, given by ensemble averaged end-to-end distance, 
Ree =

ÅÅÅÅÅ
hr2

eei
p

. It is convenient to measure the expansion or contrac-
tion of size with respect to the Flory Random Coil (FRC) limit 
by introducing a swelling factor x de!ned as R2

ee = Nb`x where, b = 
3.8 Å is the bond length, ̀ = 8.0 Å is the Kuhn length (see Refs. (13, 
41) for details). This swelling factor x depends on the degrees of 
ionization (α+, α−), which in turn depend on x, necessitating 
a self-consistent formulation in which all three variables 
(x, α+, α−) are determined together from a free energy. Below we 
describe this free energy as a function of all three variables as 
well as charge content, charge patterning, salt concentration, 
and temperature.

Free energy
The total free energy has !ve physically distinct contributions: 
F(x, α+, α−)=F1(α+, α−)+F2(α+, α−)+F3(α+, α−)+F4(α+, α−)+F5(x, α+, α−). 
F1, F2 are the combinatorial, translational entropies of the chain; 
F3 is the "uctuation contribution of all ions (see Supplementary 
Material, eqs. S1-S6, for details of these three terms). F4 is the en-
ergy (related to equilibrium constant) of ion pair formation arising 

from each counterion (or salt ion) condensed with its oppositely 
charged partner on the chain, given in units of β = 1/(kBT) by (27)

βF4

N
= − f+(1 − α+) + f−(1 − α−)

⇥ ⇤ ˜̀B
p̃

δ + 1
2

✓ ◆
(1) 

where, f+ = N+/N and f− = N−/N are sequence charge fractions, p̃ ≡ 
p/b is the (nondimensional) distance between a pair of ions, 
˜̀B ≡ `B/b, `B is Bjerrum length (e2/4πϵ0ϵkBT), and δ = ϵ/ϵl is the di-
electric mismatch between water’s dielectric constant, ϵ = 80, 
and that of the local chain environment, ϵl. Typical values of 
dielectric mismatch for IDPs are δ ∈ [1.3, 2.7], assuming ϵl ∈ 
[30, 60] (34). (See Supplementary Material for details on parameter 
de!nitions and estimation.) We assume the distance separating 
opposite ions is suf!ciently small that screening can be neglected. 
Parameters describing the equilibrium constant of binding/un-
binding of protons can be different from that due to the dissoci-
ated salt ions. However when !tted with data, we use a single 
set of effective parameters that are independent of the ion (salt 
or proton) type. When !tting single molecule data (protein con-
centration in pico molar) with salt concentration (in milli molar), 
as will be done below, we expect the !tted parameters to primarily 
arise from salt induced charge regulation. Contributions to the 
free energy from chain connectivity and intra-chain interactions 
are modeled by F5(x, α+, α−) derived using a variational approach 
(30, 41).

βF5 = 3
2

(x − ln (x)) + ω3B
2

3
2πx

✓ ◆3

+ 2 ˜̀BQ
3

2πx

✓ ◆1/2

+Ω 3
2πx

✓ ◆3/2

.

(2) 

The !rst term on the right-hand side captures chain connectivity. 
The second term describes three-body repulsive excluded volume 
with strength ω3, to prevent chain collapse in case of strong at-
traction. The three-body contribution is given by

B = 1
N

XN

l=3

Xl−1

m=2

Xm−1

n=1

(l − n)

[(l − m)(m − n)]3/2 . (3) 

The third term accounts for sequence dependent charge–charge 
interactions with screening, where Q is de!ned as (31)

Q = 1
N
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m=2

Xm−1

n=1

qmqn (m − n)1/2A(κ̃2x(m − n)/6) (4) 
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p
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p
), (5) 

where, the charge on each residue adopts degree of ionization, 
qm = ±α±. In the limit of zero screening, and full ionization Q re-
duces to the Sequence Charge Decoration (SCD) metric de!ned 
in prior work (8, 41). Inverse Debye screening length is given by 
κ̃2 = 4π ˜̀B[(f+α+ + f−α−)ρ̃ + 2c̃s] where densities of residues and salt 
ions are nondimensionalized as ρ̃ ≡ ρb3 and c̃s ≡ csb3.

The !nal term with Ω includes all two-body short-range inter-
actions, with three distinct contributions. The !rst contribution 
is nonelectrostatic, Ωnon−e, given by

Ωnon−e = ω2
1
N

XN

m=2

Xm−1

n=1

(m − n)−1/2 (6) 

where, ω2 is a mean-!eld nonelectrostatic interaction among all 
residues. Sequence speci!city of this term has also recently 
been proposed using a Sequence Hydropathy Decoration metric 
to model simulated chain dimensions (13). We ignore temperature 
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Prothymosin-alpha measured in single-molecule experiments 
(33). Using parameters derived from this experiment, we make 
predictions for ionization and size for different heteropolymer se-
quences including real IDPs. We !nd ionization and conformation 
both depend on charge patterning. We also !nd IDP sequences can 
coexist in two states in the charge-conformation landscape giving 
rise to a cooperative transition with temperature. The origin of the 
cooperativity is primarily due to sequence dependent interaction 
between charges and dipoles, an outcome of partial ionization 
balancing entropic and enthalpic contributions to the free energy. 
Consequently, the emergence of the coexistence and the gap be-
tween the two stable solutions/states (in ionization and chain di-
mension space) can be controlled by modulating charge patterns 
in the sequence while keeping the same composition. This effect 
manifests in a nontrivial way in the context of phosphorylation, 
which adds negative charges on Serine/Threonine. We notice 
that while some phosphorylation sites cause only modest changes 
in conformation, other phosphorylation sites maintaining the 
same charge composition can cause drastic changes in ionization 
and conformation due to appearance of the two coexistent 
phases. We envision that our !nding of dipolar forces and se-
quence effects on IDP conformations will enhance the growing 
body of research demonstrating the critical role of electrostatics 
in the function of IDPs (34–40).

Model
Degrees of ionization
We consider an IDP consisting of N residues, with N+ positive and 
N− negative charges upon full ionization (caused by release of 
counterions). However, counterions and/or salt ions can condense 
from solution onto some charged residues, neutralizing those 
charges and forming local dipoles. The partial ionization is mod-
eled by introducing mean degrees of ionization for each charge 
type, α± ∈ [0, 1]. Each residue (m) is assigned a charge qm = α+, 
qm = −α−, or qm = 0 depending on its classi!cation (acidic/basic/ 
neutral), generalizing earlier work on homopolymers (17, 27, 28). 
Correspondingly, degrees of condensation are given by 1 − α±, 
and residue (m) speci!c dipole fraction is de!ned as dm = 1 − α+, 
dm = 1 − α−, or dm = 0. Net charge of the entire chain is given by 
qnet = N+α+ − N−α−.

Charge composition, patterning, and degrees of ionization dic-
tate IDP size, given by ensemble averaged end-to-end distance, 
Ree =

ÅÅÅÅÅ
hr2

eei
p

. It is convenient to measure the expansion or contrac-
tion of size with respect to the Flory Random Coil (FRC) limit 
by introducing a swelling factor x de!ned as R2

ee = Nb`x where, b = 
3.8 Å is the bond length, ̀ = 8.0 Å is the Kuhn length (see Refs. (13, 
41) for details). This swelling factor x depends on the degrees of 
ionization (α+, α−), which in turn depend on x, necessitating 
a self-consistent formulation in which all three variables 
(x, α+, α−) are determined together from a free energy. Below we 
describe this free energy as a function of all three variables as 
well as charge content, charge patterning, salt concentration, 
and temperature.

Free energy
The total free energy has !ve physically distinct contributions: 
F(x, α+, α−)=F1(α+, α−)+F2(α+, α−)+F3(α+, α−)+F4(α+, α−)+F5(x, α+, α−). 
F1, F2 are the combinatorial, translational entropies of the chain; 
F3 is the "uctuation contribution of all ions (see Supplementary 
Material, eqs. S1-S6, for details of these three terms). F4 is the en-
ergy (related to equilibrium constant) of ion pair formation arising 

from each counterion (or salt ion) condensed with its oppositely 
charged partner on the chain, given in units of β = 1/(kBT) by (27)

βF4
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⇥ ⇤ ˜̀B
p̃

δ + 1
2
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(1) 

where, f+ = N+/N and f− = N−/N are sequence charge fractions, p̃ ≡ 
p/b is the (nondimensional) distance between a pair of ions, 
˜̀B ≡ `B/b, `B is Bjerrum length (e2/4πϵ0ϵkBT), and δ = ϵ/ϵl is the di-
electric mismatch between water’s dielectric constant, ϵ = 80, 
and that of the local chain environment, ϵl. Typical values of 
dielectric mismatch for IDPs are δ ∈ [1.3, 2.7], assuming ϵl ∈ 
[30, 60] (34). (See Supplementary Material for details on parameter 
de!nitions and estimation.) We assume the distance separating 
opposite ions is suf!ciently small that screening can be neglected. 
Parameters describing the equilibrium constant of binding/un-
binding of protons can be different from that due to the dissoci-
ated salt ions. However when !tted with data, we use a single 
set of effective parameters that are independent of the ion (salt 
or proton) type. When !tting single molecule data (protein con-
centration in pico molar) with salt concentration (in milli molar), 
as will be done below, we expect the !tted parameters to primarily 
arise from salt induced charge regulation. Contributions to the 
free energy from chain connectivity and intra-chain interactions 
are modeled by F5(x, α+, α−) derived using a variational approach 
(30, 41).
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The !rst term on the right-hand side captures chain connectivity. 
The second term describes three-body repulsive excluded volume 
with strength ω3, to prevent chain collapse in case of strong at-
traction. The three-body contribution is given by

B = 1
N

XN

l=3

Xl−1

m=2

Xm−1

n=1

(l − n)

[(l − m)(m − n)]3/2 . (3) 

The third term accounts for sequence dependent charge–charge 
interactions with screening, where Q is de!ned as (31)

Q = 1
N

XN

m=2

Xm−1

n=1

qmqn (m − n)1/2A(κ̃2x(m − n)/6) (4) 

A(z) = 1 −
ÅÅÅ
πz

p
exp(z) erfc(

ÅÅ
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p
), (5) 

where, the charge on each residue adopts degree of ionization, 
qm = ±α±. In the limit of zero screening, and full ionization Q re-
duces to the Sequence Charge Decoration (SCD) metric de!ned 
in prior work (8, 41). Inverse Debye screening length is given by 
κ̃2 = 4π ˜̀B[(f+α+ + f−α−)ρ̃ + 2c̃s] where densities of residues and salt 
ions are nondimensionalized as ρ̃ ≡ ρb3 and c̃s ≡ csb3.

The !nal term with Ω includes all two-body short-range inter-
actions, with three distinct contributions. The !rst contribution 
is nonelectrostatic, Ωnon−e, given by

Ωnon−e = ω2
1
N

XN

m=2

Xm−1

n=1

(m − n)−1/2 (6) 

where, ω2 is a mean-!eld nonelectrostatic interaction among all 
residues. Sequence speci!city of this term has also recently 
been proposed using a Sequence Hydropathy Decoration metric 
to model simulated chain dimensions (13). We ignore temperature 
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Prothymosin-alpha measured in single-molecule experiments 
(33). Using parameters derived from this experiment, we make 
predictions for ionization and size for different heteropolymer se-
quences including real IDPs. We !nd ionization and conformation 
both depend on charge patterning. We also !nd IDP sequences can 
coexist in two states in the charge-conformation landscape giving 
rise to a cooperative transition with temperature. The origin of the 
cooperativity is primarily due to sequence dependent interaction 
between charges and dipoles, an outcome of partial ionization 
balancing entropic and enthalpic contributions to the free energy. 
Consequently, the emergence of the coexistence and the gap be-
tween the two stable solutions/states (in ionization and chain di-
mension space) can be controlled by modulating charge patterns 
in the sequence while keeping the same composition. This effect 
manifests in a nontrivial way in the context of phosphorylation, 
which adds negative charges on Serine/Threonine. We notice 
that while some phosphorylation sites cause only modest changes 
in conformation, other phosphorylation sites maintaining the 
same charge composition can cause drastic changes in ionization 
and conformation due to appearance of the two coexistent 
phases. We envision that our !nding of dipolar forces and se-
quence effects on IDP conformations will enhance the growing 
body of research demonstrating the critical role of electrostatics 
in the function of IDPs (34–40).

Model
Degrees of ionization
We consider an IDP consisting of N residues, with N+ positive and 
N− negative charges upon full ionization (caused by release of 
counterions). However, counterions and/or salt ions can condense 
from solution onto some charged residues, neutralizing those 
charges and forming local dipoles. The partial ionization is mod-
eled by introducing mean degrees of ionization for each charge 
type, α± ∈ [0, 1]. Each residue (m) is assigned a charge qm = α+, 
qm = −α−, or qm = 0 depending on its classi!cation (acidic/basic/ 
neutral), generalizing earlier work on homopolymers (17, 27, 28). 
Correspondingly, degrees of condensation are given by 1 − α±, 
and residue (m) speci!c dipole fraction is de!ned as dm = 1 − α+, 
dm = 1 − α−, or dm = 0. Net charge of the entire chain is given by 
qnet = N+α+ − N−α−.

Charge composition, patterning, and degrees of ionization dic-
tate IDP size, given by ensemble averaged end-to-end distance, 
Ree =

ÅÅÅÅÅ
hr2

eei
p

. It is convenient to measure the expansion or contrac-
tion of size with respect to the Flory Random Coil (FRC) limit 
by introducing a swelling factor x de!ned as R2

ee = Nb`x where, b = 
3.8 Å is the bond length, ̀ = 8.0 Å is the Kuhn length (see Refs. (13, 
41) for details). This swelling factor x depends on the degrees of 
ionization (α+, α−), which in turn depend on x, necessitating 
a self-consistent formulation in which all three variables 
(x, α+, α−) are determined together from a free energy. Below we 
describe this free energy as a function of all three variables as 
well as charge content, charge patterning, salt concentration, 
and temperature.

Free energy
The total free energy has !ve physically distinct contributions: 
F(x, α+, α−)=F1(α+, α−)+F2(α+, α−)+F3(α+, α−)+F4(α+, α−)+F5(x, α+, α−). 
F1, F2 are the combinatorial, translational entropies of the chain; 
F3 is the "uctuation contribution of all ions (see Supplementary 
Material, eqs. S1-S6, for details of these three terms). F4 is the en-
ergy (related to equilibrium constant) of ion pair formation arising 

from each counterion (or salt ion) condensed with its oppositely 
charged partner on the chain, given in units of β = 1/(kBT) by (27)

βF4

N
= − f+(1 − α+) + f−(1 − α−)

⇥ ⇤ ˜̀B
p̃

δ + 1
2

✓ ◆
(1) 

where, f+ = N+/N and f− = N−/N are sequence charge fractions, p̃ ≡ 
p/b is the (nondimensional) distance between a pair of ions, 
˜̀B ≡ `B/b, `B is Bjerrum length (e2/4πϵ0ϵkBT), and δ = ϵ/ϵl is the di-
electric mismatch between water’s dielectric constant, ϵ = 80, 
and that of the local chain environment, ϵl. Typical values of 
dielectric mismatch for IDPs are δ ∈ [1.3, 2.7], assuming ϵl ∈ 
[30, 60] (34). (See Supplementary Material for details on parameter 
de!nitions and estimation.) We assume the distance separating 
opposite ions is suf!ciently small that screening can be neglected. 
Parameters describing the equilibrium constant of binding/un-
binding of protons can be different from that due to the dissoci-
ated salt ions. However when !tted with data, we use a single 
set of effective parameters that are independent of the ion (salt 
or proton) type. When !tting single molecule data (protein con-
centration in pico molar) with salt concentration (in milli molar), 
as will be done below, we expect the !tted parameters to primarily 
arise from salt induced charge regulation. Contributions to the 
free energy from chain connectivity and intra-chain interactions 
are modeled by F5(x, α+, α−) derived using a variational approach 
(30, 41).
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The !rst term on the right-hand side captures chain connectivity. 
The second term describes three-body repulsive excluded volume 
with strength ω3, to prevent chain collapse in case of strong at-
traction. The three-body contribution is given by

B = 1
N

XN

l=3

Xl−1

m=2

Xm−1

n=1

(l − n)

[(l − m)(m − n)]3/2 . (3) 

The third term accounts for sequence dependent charge–charge 
interactions with screening, where Q is de!ned as (31)

Q = 1
N

XN

m=2

Xm−1

n=1

qmqn (m − n)1/2A(κ̃2x(m − n)/6) (4) 

A(z) = 1 −
ÅÅÅ
πz

p
exp(z) erfc(

ÅÅ
z

p
), (5) 

where, the charge on each residue adopts degree of ionization, 
qm = ±α±. In the limit of zero screening, and full ionization Q re-
duces to the Sequence Charge Decoration (SCD) metric de!ned 
in prior work (8, 41). Inverse Debye screening length is given by 
κ̃2 = 4π ˜̀B[(f+α+ + f−α−)ρ̃ + 2c̃s] where densities of residues and salt 
ions are nondimensionalized as ρ̃ ≡ ρb3 and c̃s ≡ csb3.

The !nal term with Ω includes all two-body short-range inter-
actions, with three distinct contributions. The !rst contribution 
is nonelectrostatic, Ωnon−e, given by

Ωnon−e = ω2
1
N

XN

m=2

Xm−1

n=1

(m − n)−1/2 (6) 

where, ω2 is a mean-!eld nonelectrostatic interaction among all 
residues. Sequence speci!city of this term has also recently 
been proposed using a Sequence Hydropathy Decoration metric 
to model simulated chain dimensions (13). We ignore temperature 
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Prothymosin-alpha measured in single-molecule experiments 
(33). Using parameters derived from this experiment, we make 
predictions for ionization and size for different heteropolymer se-
quences including real IDPs. We !nd ionization and conformation 
both depend on charge patterning. We also !nd IDP sequences can 
coexist in two states in the charge-conformation landscape giving 
rise to a cooperative transition with temperature. The origin of the 
cooperativity is primarily due to sequence dependent interaction 
between charges and dipoles, an outcome of partial ionization 
balancing entropic and enthalpic contributions to the free energy. 
Consequently, the emergence of the coexistence and the gap be-
tween the two stable solutions/states (in ionization and chain di-
mension space) can be controlled by modulating charge patterns 
in the sequence while keeping the same composition. This effect 
manifests in a nontrivial way in the context of phosphorylation, 
which adds negative charges on Serine/Threonine. We notice 
that while some phosphorylation sites cause only modest changes 
in conformation, other phosphorylation sites maintaining the 
same charge composition can cause drastic changes in ionization 
and conformation due to appearance of the two coexistent 
phases. We envision that our !nding of dipolar forces and se-
quence effects on IDP conformations will enhance the growing 
body of research demonstrating the critical role of electrostatics 
in the function of IDPs (34–40).

Model
Degrees of ionization
We consider an IDP consisting of N residues, with N+ positive and 
N− negative charges upon full ionization (caused by release of 
counterions). However, counterions and/or salt ions can condense 
from solution onto some charged residues, neutralizing those 
charges and forming local dipoles. The partial ionization is mod-
eled by introducing mean degrees of ionization for each charge 
type, α± ∈ [0, 1]. Each residue (m) is assigned a charge qm = α+, 
qm = −α−, or qm = 0 depending on its classi!cation (acidic/basic/ 
neutral), generalizing earlier work on homopolymers (17, 27, 28). 
Correspondingly, degrees of condensation are given by 1 − α±, 
and residue (m) speci!c dipole fraction is de!ned as dm = 1 − α+, 
dm = 1 − α−, or dm = 0. Net charge of the entire chain is given by 
qnet = N+α+ − N−α−.

Charge composition, patterning, and degrees of ionization dic-
tate IDP size, given by ensemble averaged end-to-end distance, 
Ree =

ÅÅÅÅÅ
hr2

eei
p

. It is convenient to measure the expansion or contrac-
tion of size with respect to the Flory Random Coil (FRC) limit 
by introducing a swelling factor x de!ned as R2

ee = Nb`x where, b = 
3.8 Å is the bond length, ̀ = 8.0 Å is the Kuhn length (see Refs. (13, 
41) for details). This swelling factor x depends on the degrees of 
ionization (α+, α−), which in turn depend on x, necessitating 
a self-consistent formulation in which all three variables 
(x, α+, α−) are determined together from a free energy. Below we 
describe this free energy as a function of all three variables as 
well as charge content, charge patterning, salt concentration, 
and temperature.

Free energy
The total free energy has !ve physically distinct contributions: 
F(x, α+, α−)=F1(α+, α−)+F2(α+, α−)+F3(α+, α−)+F4(α+, α−)+F5(x, α+, α−). 
F1, F2 are the combinatorial, translational entropies of the chain; 
F3 is the "uctuation contribution of all ions (see Supplementary 
Material, eqs. S1-S6, for details of these three terms). F4 is the en-
ergy (related to equilibrium constant) of ion pair formation arising 

from each counterion (or salt ion) condensed with its oppositely 
charged partner on the chain, given in units of β = 1/(kBT) by (27)

βF4

N
= − f+(1 − α+) + f−(1 − α−)

⇥ ⇤ ˜̀B
p̃

δ + 1
2

✓ ◆
(1) 

where, f+ = N+/N and f− = N−/N are sequence charge fractions, p̃ ≡ 
p/b is the (nondimensional) distance between a pair of ions, 
˜̀B ≡ `B/b, `B is Bjerrum length (e2/4πϵ0ϵkBT), and δ = ϵ/ϵl is the di-
electric mismatch between water’s dielectric constant, ϵ = 80, 
and that of the local chain environment, ϵl. Typical values of 
dielectric mismatch for IDPs are δ ∈ [1.3, 2.7], assuming ϵl ∈ 
[30, 60] (34). (See Supplementary Material for details on parameter 
de!nitions and estimation.) We assume the distance separating 
opposite ions is suf!ciently small that screening can be neglected. 
Parameters describing the equilibrium constant of binding/un-
binding of protons can be different from that due to the dissoci-
ated salt ions. However when !tted with data, we use a single 
set of effective parameters that are independent of the ion (salt 
or proton) type. When !tting single molecule data (protein con-
centration in pico molar) with salt concentration (in milli molar), 
as will be done below, we expect the !tted parameters to primarily 
arise from salt induced charge regulation. Contributions to the 
free energy from chain connectivity and intra-chain interactions 
are modeled by F5(x, α+, α−) derived using a variational approach 
(30, 41).
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The !rst term on the right-hand side captures chain connectivity. 
The second term describes three-body repulsive excluded volume 
with strength ω3, to prevent chain collapse in case of strong at-
traction. The three-body contribution is given by

B = 1
N

XN

l=3

Xl−1

m=2

Xm−1

n=1

(l − n)

[(l − m)(m − n)]3/2 . (3) 

The third term accounts for sequence dependent charge–charge 
interactions with screening, where Q is de!ned as (31)

Q = 1
N

XN

m=2

Xm−1

n=1

qmqn (m − n)1/2A(κ̃2x(m − n)/6) (4) 

A(z) = 1 −
ÅÅÅ
πz

p
exp(z) erfc(
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z
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), (5) 

where, the charge on each residue adopts degree of ionization, 
qm = ±α±. In the limit of zero screening, and full ionization Q re-
duces to the Sequence Charge Decoration (SCD) metric de!ned 
in prior work (8, 41). Inverse Debye screening length is given by 
κ̃2 = 4π ˜̀B[(f+α+ + f−α−)ρ̃ + 2c̃s] where densities of residues and salt 
ions are nondimensionalized as ρ̃ ≡ ρb3 and c̃s ≡ csb3.

The !nal term with Ω includes all two-body short-range inter-
actions, with three distinct contributions. The !rst contribution 
is nonelectrostatic, Ωnon−e, given by

Ωnon−e = ω2
1
N

XN

m=2

Xm−1

n=1

(m − n)−1/2 (6) 

where, ω2 is a mean-!eld nonelectrostatic interaction among all 
residues. Sequence speci!city of this term has also recently 
been proposed using a Sequence Hydropathy Decoration metric 
to model simulated chain dimensions (13). We ignore temperature 
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dependence of ω2 that would arise from temperature dependent 
solvation effects. Two additional contributions to Ω are, Ωc−d 

and Ωd−d, resulting from directionally averaged charge–dipole 
and dipole–dipole interactions approximated as delta function po-
tentials (27, 29), with

Ωc−d = ωcd
1
N

XN

m=2

Xm−1

n=1

cmdn + cndm
ˇ �

(m − n)−1/2 (7) 

Ωd−d = ωdd
1
N

XN

m=2

Xm−1

n=1

dmdn (m − n)−1/2, (8) 

where, for each residue, charge weight is dictated by degree of ion-
ization, cm = α±, and dipole weight is dictated by degree of conden-
sation, dm = 1 − α±. All nonionizable residues contribute zero. 
Despite treating charges of each sign with uniform degrees of ion-
ization, sequence patterning is retained through the placement of 
positively and negatively charged residues. The exponent of −1/2 
arises whenever the interaction is described by delta function po-
tential, an approximation made to describe short-range charge– 
dipole and dipole–dipole terms in analytically tractable form. 
Consequently, these two contributions give rise to new patterning 
metrics: Sequence Charge–Dipole Decoration (SCDD = Ωc−d/ωcd) 
and Sequence Dipole Decoration (SDD = Ωd−d/ωdd). The strength 
of the effective interaction (pseudopotential) due to charge–dipole 
(ωcd) and dipole–dipole (ωdd) are given by (17, 27, 29),

ωcd = − π
3

δ2 ˜̀2
B p̃2exp( − 2κ̃)[2 + κ̃] (9) 

ωdd = − π
9

δ2 ˜̀2
B p̃4exp( − 2κ̃)[4 + 8κ̃ + 4κ̃2 + κ̃3]. (10) 

Given an IDP sequence and parameters p̃, δ, ω2, ω3, total free 
energy is minimized to determine (x, α+, α−) as functions of 
salt concentration cs and temperature via `B. Then, we obtain 

ensemble averaged end-to-end distance using Ree =
ÅÅÅÅÅÅÅ
N`bx

p
, 

and net charge using qnet = N+α+ − N−α−. Some parameters of 
the model (p, δ, ω3) can be either estimated from previous 
work or !tted from data while others (ω2) can only be deter-
mined by !tting (see Fig. 2 caption and Supplementary 
Material).

Results and discussion
Condensation model quantitatively describes 
experimentally measured chain dimension and 
predicts charge of an IDP
We !rst provide a quantitative test of our model against two avail-
able data sets for a well studied IDP, Prothymosin-alpha. 
End-to-end distance at different salt concentrations was recently 
measured by Schuler and colleagues using single-molecule FRET 
(33). Net charge of the same protein at low salt is available from 
electrometry measurement (19). Our model quantitatively 
matches salt-dependent chain dimensions data as shown in 
Fig. 2 (see Supplementary Material for details of the !tting proced-
ure, parameter values, its closeness to expectation and Table S1
for sequence). Net charge was predicted using these parameters 
across salt concentration and compared against the measured 
net charge at low salt value (magenta cross in Fig. 2). While our 
model well describes the salt dependent chain dimension and rea-
sonably approximates charge at low salt, the discrepancy can be 
due to coarse-grain nature of the model that omits atomic contri-
butions to chain conformation, site speci!c charge-regulation or 
due to indirect estimate of charge provided by electrometry. We 
note that existing theoretical models assuming full ionization 
(α± = 1) will highly overestimate the net charge (orange line) com-
pared to data. Moreover, sequence dependent full ionization mod-
el (using only Eq. 2 with α± = 1) also overestimates salt dependent 
chain dimension at low salt values. Besides providing quantitative 
comparison with existing data, our monopole- and dipole-based 
model also predicts charge regulation at higher salt concentra-
tions stimulating future experiments and simulation. It would 
be important to test these predictions with potentiometry experi-
ments (20, 21) giving direct measurements of charge unlike 
electrometry.

The degree of ionization and chain dimension are 
self-consistently regulated by sequence 
patterning
To investigate the effects of speci!c charge sequence on conform-
ation and ionization, we consider a set of sequences with identical 
charge composition but different arrangements. We use a subset 
of sequences originally designed by Das and Pappu (7) where 25 

A B

Fig. 2. Counterion condensation model quantitatively reproduces experimentally measured end-to-end distance data of Prothymosin-alpha, and 
predicts net charge of the same protein. A) Salt dependent end-to-end distance data (red points) is well described by the best !t counterion model (blue 
curve). Fitted parameters are: p̃ = 0.55, δ = 1.3, ω2 = 1.275. Other model parameters are: ρ = 1 × 10−6 mol / L (ρ̃ ≈ 3.3 × 10−8 ), `B = 7.12 Å (T = 20�C) 
( ˜̀B ≈ 1.87), and ω3 = 0.1. B) The best !t model predicts net charge (blue line) as a function of salt and is compared against effective charge measured at a 
single low salt concentration (19) (magenta point). The best !t model with no-condensation/full ionization (orange curve) over estimates both size at low 
salt concentration and charge. (See Supplementary Material for details on estimation of model parameters; sequences in Table S1 and !ts for different 
choices of ω3 in Figs. S2 and S3).
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Theory describes conformation and charge 
state

FIG. 2: Counterion condensation model quantitatively reproduces experimentally measured end-to-end distance
data of Prothymosin-alpha, and predicts net charge of the same protein. (left panel) Salt dependent end-to-end
distance data (red points) is well described by the best fit counterion model (blue curve). Fitted parameters are:
p̃ = 0.55, � = 1.3,!2 = 1.275. Other model parameters are: ⇢ = 1⇥ 10�6 mol/L (⇢̃ ⇡ 3.3⇥ 10�8), `B = 7.12 Å
(T = 20 �C) (˜̀B ⇡ 1.87), and !3 = 0.1. (See Supplementary Information for details on estimation of model
parameters; sequences in Supplementary Table 1.) The best fit model predicts net charge (blue line in the right
panel) as a function of salt and is compared against e↵ective charge measured at a single low salt concentration[19]
(magenta point). The best fit model with no-condensation/full ionization (orange curve) over estimates both size at
low salt concentration and charge (right panel).

sequences are fully ionized at low `B (high temperature) due to translational entropy, consistent with earlier studies
[40]. Subsequent increase in `B (decrease in temperature) reduces ionization, as ion pair formation is rewarded at
the cost of entropy loss (see Figure 3). Note that ionization will not approach zero even at very large `B (very low
temperature), due to charge-dipole attraction which favor partial ionization.

FIG. 3: Sequences with blocky charge patterns (sv30) are more ionized and compact compared to sequences with
same charge composition where opposite charges are well mixed (sv1). (left) Predicted degrees of ionization for
negative (↵� solid lines) and positive charges (↵+; dashed lines), and (right) end-to-end distances (Ree) as functions
of `B (relating temperature) shown for di↵erent toy sequences (di↵erent colors). We use parameters:
cs ⇡ 1⇥ 10�3 mol/L (c̃s = 3⇥ 10�5), ⇢ ⇡ 5⇥ 10�3 mol/L (⇢̃ = 15⇥ 10�5), with � = 1.3 and p̃ = 0.55 using best fit
values for Prothymosin-alpha (Figure 2). Non-electrostatic two-body and three-body interactions are !2 = 0 and
!3 = 0.1. Ionization of positive and negative charges overlap only for sequences with special symmetry (sv1, sv30).

Next, at moderate `B ⇡ 7 Å (near room temperature) we find that sequences with higher charge segregation (such as
sv30) are more ionized compared to well mixed sequences (sv1 and others). Charge segregation in sv30 causes strong
attraction (reflected in highly negative SCD) between oppositely charged blocks within the chain when amino acids
are fully ionized. This intra-chain attraction is stronger than dipolar attractions that would form under significant
condensation (see Supplementary Figure 2). Consequently, for well segregated block sequences, ionization is favored
over condensation. Such sequences are also most compact due to this strong charge-charge attraction. In well mixed
sequences (such as sv1), full ionization leads to substantially weaker overall charge-charge attraction (low SCD) due
to partial cancellation by repulsion of like charges. As a result, well mixed sequences reduce enthalpy by forming more
dipoles with solution ions enabling charge-dipole and dipole-dipole attractions. However, these dipolar attractions are
weaker than charge-charge attraction in sv30, so well mixed sequences have larger chain dimensions compared to sv30
(see Figure 3). We also verified the generality of these findings at other salt concentrations (see Supplementary Figure
3), although ionization and dimension become less sensitive to sequence patterning due to screening of electrostatics.
Finally, we find unequal degrees of ionization for positive and negative charges, ↵+ 6= ↵�, for all the sequence (except
sv1 and sv30). This is surprising since each sequence has equal composition of positive and negative charges leading to
the expectation that the free energy should be invariant under charge reversal. However, the source of this symmetry
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Sequence patterning regulates 
conformation and charge state
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dimensions compared to sv30 (see Figure 3). We also verified
the generality of these findings at other salt concentrations
(see Supporting Information, Figure S3), although ionization
and dimension become less sensitive to sequence patterning
due to screening of electrostatics.
Finally, we find unequal degrees of ionization for positive
and negative charges, –+ ”= –≠, for all the sequence (except
sv1 and sv30). This is surprising since each sequence has
equal composition of positive and negative charges leading
to the expectation that the free energy should be invariant
under charge reversal. However, the source of this symmetry
breaking can be understood by focusing on the electrostatic
interaction term between like charges and opposite charges
that separately couple with the degrees of ionization giving
rise to a special symmetry in patterning which is preserved
only in sv1 and sv30 (See Supporting Information, discussion
of eqs. S7-S11, for a detailed explanation).

Choice of phosphosites affects degree of ionization and chain
dimension in IDPs. To probe the e�ects of sequence patterning
beyond toy sequences, we consider an intrinsically disordered
region of a protein (Uniprot ID P0A8H9) inhibiting binding
of DNA gyrase to DNA. This protein was previously studied
using all-atom simulation and a model assuming full ionization
(28). The unmodified sequence has 7 positive and 12 negative
charges. Two di�erent sequence variants, S54S56 and S2T15,
were created from two-site phosphorylation-mimic modifica-
tions (without actually adding a phosphate group) in which
two S/T residues have been replaced by E resulting in 14
negative charges. These two sequence variants were selected
because they have maximum and minimum SCD among all
two-site modifications. Our earlier work (28) supported by
all-atom Monte Carlo simulation (41, 42) has shown this is
an e�ective strategy to detect sequences with maximum dif-
ference in size, since SCD serves as a reasonable indicator of
electrostatic contribution to size, assuming other e�ects are
negligible. These sequences also have di�erent blockiness val-
ues (0.32 for S2T15, and 0.37 for S54S56) from the patterning
metric proposed by Das and Pappu (7), supporting our choice
of the phosphosites to generate appreciable di�erence in size.
(See Supporting Information, Table S3, for explicit sequences.)

Fig. 4. Size and ionization are modulated by phosphorylation and specific choice of
phosphosites, as demonstrated by IDP P0A8H9 (WT), and its two phospho-mimic
variants (S54S56 and S2T15) in which two S/T sites are replaced by E. (left) Degrees
of ionization for negative (solid lines) and positive charges (dashed lines) are signifi-
cantly different at the same ¸B for the same sequence. (right) End-to-end distances
as a function of ¸B reveal strong dependence on charge patterning. WT is the most
compact because its net charge is closest to neutrality; the phospho-mimic variants
each have extra charge of ≠2. Parameters are the same as in Figure 3.

We find the two phosphovariants, despite identical charge com-

positions, have markedly di�erent sizes (see Figure 4). In
contrast to sv sequenced discussed above, these two phospho-
variants of P0A8H9 do not di�er much in their degrees of
ionization. This is because P0A8H9 variants are more poly-
electrolyte like compared to sv sequences which are strong
polyampholytes. Also, the modified chains with greater net
charge (≠7; in green and orange) are more expanded than the
unmodified chain (net charge of ≠5; shown in blue) due to
electrostatic repulsion. We conclude that sequences predicted
to exhibit significant di�erences in size within full ionization
models can maintain their di�erences even when charge con-
densation with dipole formation is included, although the
extent of di�erence can depend on sequence properties.

Spontaneous appearance of coexisting phases in ionization
and conformation landscape. While quantitative matching
with Prothymosin-alpha data provide a reasonable estimate
of the parameters (Figure 2), they are not universal. Here,
we again analyze P0A8H9 and phosphorylation-mimic vari-
ants, with slightly di�erent parameter choices; ” = 1.8 and
p̃ = 0.6. The choice ” = 1.8 is motivated by an estimate of
dielectric constant in IDP condensate near ‘l = 45 (32), and
p̃ = 0.6 is close to the upper limit of the realistic estimate of
the dipole length (see Supporting Information for estimated
range of realistic values). We have also increased the number
of phosphosites to five allowing us to evaluate the e�ect of
charge patterning from a large pool of sequences having same
composition but di�erent patterning. There are 792 possible
sequences having five S/T replaced by E. We first focus on
a subset of phosphovariants based on SCD, including the
highest and lowest SCD along with two intermediates. (See
Supporting Information, Table S3, for explicit sequences.)
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Fig. 5. Coexisting phases in conformation and charge appear for a subset of five
site phosphovariants of P0A8H9, marked by a first order transition. Appearance
of coexistence depends on specific sequence and SCD, illustrated by two extreme
phosphovariants with SCD maximized (V1 in green) and minimized (V792 in orange),
and two others with intermediate SCD (V186 and V544 in red and violet). (left) Degree
of ionization (–≠) for negative charges as a function of ¸B show strong sequence
dependence compared to that of the positive charges (not shown since it varies little
across sequence and temperature). (right) End-to-end distances as a function of
¸B show strong dependence on charge patterning. The first order transition occurs
in both charge and conformation for the maximum and intermediate SCD variants.
Dotted black curves sketch the region where this transition occurs across all five site
variants. Parameters are p̃ = 0.6, ” = 1.8, with others kept as in Figure 3.

The variant with the highest SCD (denoted as V1, green curve
in Figure 5) exhibits a first order coil-globule transition with
¸B (inversely proportional to temperature). Near this transi-
tion, two equally likely coexisting phases emerge, as is evident
from the free energy landscape in ionization-conformation
space showing two distinct and equal minima (see Figure 6).
One minimum corresponds to an expanded state with high
ionization, while the other is a compact state with high con-
densation. Ionization/condensation are based on –≠, since

5

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)
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Phosphorylation can harness charge and 
conformational fluctuation
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Conclusion

• Sequence based theory can help understand function 

•  Hamiltonian based analytical theory can be useful to dissect different 
regulators of chain conformation
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