Sequence dependent regulation of IDP conformation and function

Kingshuk Ghosh

University of Denver Department of Physics and Astronomy

IDPs have different regulators

IDPs rely on electrostatics, charges are topologically correlated

IDP conformation can also be modulated by non-electrostatics

IDPs may also exhibit charge modulation

IDP sequence is critical

Sequence matters in IDP function

Ddx4N phase separates but Ddx4CS does not

Nott et al Mol Cell (2015)

Linking sequence to conformation and function

Hamiltonian (coarse grain) based theory

H based polymer theory can be useful electrostatics chain connectivity 12 13 14 11 *R*₁₃ H =+ R_{12} R₂₃ $\frac{e^2}{R_{12}}$ e^2 e^2 *R*₁₃ R₂₃ two body Three body repulsive

Theory can compute ensemble average end-to-end distance

H based polymer theory can describe charge correlation

$$BF(R_{ee}) = -S_{ent}(R_{ee}) + \Omega_{non-elec}(R_{ee}) + Q_{elec}f(R_{ee})$$

SCD =
$$Q = \frac{1}{N} \sum_{m=2}^{N} \sum_{n=1}^{m-1} q_m q_n (m-n)^{1/2}$$

sequence specificity

Theory captures all-atom simulation of toy sequences

SCD =
$$Q = \frac{1}{N} \sum_{m=2}^{N} \sum_{n=1}^{m-1} q_m q_n (m-n)^{1/2}$$

Sawle and Ghosh (JCP 2015)

Ghosh, Huihui, Phillips, Haider Annual Reviews of Biophysics (2022)

Modeling the Disordered Proteins (IDPs)

Experiment confirms predicted mutational hot spots

HYPK-WT (22 positive and 31 negative charges)

HYPK-4K v1

Prediction R_{ee, v1} < R_{ee, v2}

MRRRGEIDMATEGDVELELETETSGPERPPEKPRKHDSGAADLERVTDYAEEKEIQSSNLETAMSVIGDRRSREQKAKQEREKELAKVTIK KEDLELIMTEM<mark>K</mark>ISRAAA<mark>K</mark>RSLR<mark>K</mark>HMGNVV<mark>K</mark>ALIALTN

HYPK-4K v2

MRRRGEIDMATEGDV**K**LEL**K**TETSGPERPPEKPRKHDSGAADLERVTDYA**K**EKEIQSSNLETAMSVIGDRRSREQKAKQEREKELAKVTIK KEDLELIMT**K**MEISRAAAERSLREHMGNVVEALIALTN

Over 31000 possibilities

PNAS 121, e2316408121 (2024)

Discovery of a marginal IDP and its sequence dependence

PNAS 121, e2316408121 (2024)

Salt as another regulator of conformation

How to model salt dependence ?

 $\beta F(R_{ee}) = -S_{ent}(R_{ee}) + \Omega_{non-elec}(R_{ee}) + Q'_{elec}(R_{ee}, c_s)$

$$Q'_{elec}(R_{ee}, c_s) \approx A_1 \sum_m \sum_n q_m q_n (m-n)^{1/2} - A_2 q_s^{1/2} \sum_m \sum_n q_m q_n (m-n) + \dots$$
SCD
$$SCD$$

$$SCD$$

$$SCD_{lowsalt}$$

SCD_{lowsalt} > 0 shrink SCD_{lowsalt} < 0 expand

Experiment confirms the predicted trend

$$SCD_{lowsalt} = -27$$
 $SCD_{lowsalt} = -1.3$

lonic strength coupled to patterning modulates conformation

More patterning metrics arise describing intra-chain sizes

More patterning metrics arise describing intra-chain sizes

$$\beta F(R_{ij}) = \dots + Q_{elec,ij}f(R_{ij})$$

$$SCDM_{ij} = \frac{1}{(i-j)} \left[\sum_{m=j}^{i} \sum_{n=1}^{j-1} q_m q_n \frac{(m-j)^2}{(m-n)^{3/2}} + \sum_{m=j+1}^{i} \sum_{n=j}^{m-1} q_m q_n (m-n)^{1/2} + \sum_{m=i+1}^{N} \sum_{n=j}^{j-1} q_m q_n \frac{(i-j)^2}{(m-n)^{3/2}} + \sum_{m=i+1}^{N} \sum_{n=j}^{i} q_m q_n \frac{(i-n)^2}{(m-n)^{3/2}} \right]$$

IDPs have sequence specific distance profiles

SCDM maps reveal molecular blue print

Sequence Charge Decoration Matrix is IDP's molecular blueprint Role in IDP function

Challenges of modeling IDP function

- Sequence alignment does not work
- Structure alignment does not work

Functionally similar IDPs lack sequence similarity

Zarin, Tsai, Ba and Moses PNAS 2017

Functionally similar IDPs lack sequence similarity

Ste50 wt Normal, Ste50 5A Abnormal, L klu normal

Zarin, Tsai, Ba and Moses PNAS 2017

Functionally similar IDPs lack sequence similarity

Zarin, Strome, Ba, Alberti, Forman-Kay, Moses eLife 2019

Challenges of modeling IDP function

- Sequence alignment does not work
- Structure alignment does not work

What about using mathematical metric as IDP blueprint?

Can we use SCDM to classify IDPS ?

What about using mathematical metric as IDP blueprint?

Huihui Ghosh (Biophysical Journal 2021)

SCDM can detect functionally similar STE50 SCCharge

Huihui Ghosh Biophysical Journal 120, 1860 (2021)

SCDM can detect functionally similar STE50

LKCharge

PEX5 SC

RAD26

Functional

non-functional

SC5A

Huihui Ghosh (Biophysical Journal 2021)

SCDM can detect functionally similar PSC-CTR

Huihui Ghosh (Biophysical Journal 2021)

How to model sequence dependent non-electrostatics ?

Physics based Machine Learning (PML) trains H

Simulated H can be mapped to an analytical H

Physics based ML allows prediction of nontrained observables

Houston et al JCTC (under revision)

Physics based ML also reproduces experimental data

Physics based ML can be used to predict simulated relaxation

Multi-chain H correctly captures phase separation propensity

$$\mathbf{H} = \frac{3}{2l^2} \sum_{\alpha=1}^{n_p} \sum_{\tau=1}^{N-1} (\mathbf{R}_{\alpha,\tau+1} - \mathbf{R}_{\alpha,\tau})^2 + \left(\frac{1}{2} \sum_{\alpha,\beta=1}^{n_p} \sum_{\tau,\mu=1}^{N} \left[\frac{\sigma_{\tau} \sigma_{\mu} e^{-\kappa |\mathbf{R}_{\alpha,\tau} - \mathbf{R}_{\beta,\mu}|}}{|\mathbf{R}_{\alpha,\tau} - \mathbf{R}_{\beta,\mu}|} + v_2 \delta^3 (\mathbf{R}_{\alpha,\tau} - \mathbf{R}_{\beta,\mu}) \right]$$

Entropy of mixing $\beta f = \frac{\phi}{N} \ln \phi + \phi_s \ln \phi_s + \phi_c \ln \phi_c + \phi_w \ln \phi_w + \int \frac{dkk^2}{4\pi^2} \ln \left[1 + \phi \left(\frac{\xi_k}{\nu_k} + g_k \right) + \frac{\phi^2}{\nu_k} \left(\xi_k g_k - \zeta_k^2 \right) \right]$

Lin, Brady, Chan, Ghosh JCP (2020)

Lin, Brady, Chan, Ghosh JCP (2020)

PML can predict LLPS propensity for non-charge mutations

Charges may not be fully ionized

Beyond monopole electrostatics is needed

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)

charge modulation, sequence and chain conformation are coupled

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)

Beyond monopole electrostatics is needed

- Combinatorial entropy of ionization
- Counterion translational entropy
- Ion-pair formation equilibriu
- Chain free energy

$$\beta F_{5} = \frac{3}{2} (x - \ln(x)) + \frac{\omega_{3}B}{2} \left(\frac{3}{2\pi x}\right)^{3} + 2\tilde{\ell}_{B} Q \left(\frac{3}{2\pi x}\right)^{1/2} + \Omega \left(\frac{3}{2\pi x}\right)^{3/2}$$

$$\Omega_{c-d} = \omega_{cd} \frac{1}{N} \sum_{m=2}^{N} \sum_{n=1}^{m-1} (c_m d_n + c_n d_m) (m-n)^{-1/2}$$

$$\Omega_{d-d} = \omega_{dd} \frac{1}{N} \sum_{m=2}^{N} \sum_{n=1}^{m-1} d_m d_n (m-n)^{-1/2}$$

$$F_1(\alpha_+, \alpha_-)$$

T /

$$F_2(\alpha_+, \alpha_-)$$

$$\frac{\beta F_4}{N} = -[f_+(1 - \alpha_+) + f_-(1 - \alpha_-)]\frac{\tilde{\ell}_{\rm B}}{\tilde{p}}\left(\delta + \frac{1}{2}\right)$$

\

$$\tilde{\ell}_4 = \left[f(1 - \alpha) + f(1 - \alpha) \right] \tilde{\ell}_B \left(- \frac{1}{2} - \frac{1}{2} \right] \tilde{\ell}_B \left(- \frac{1}{2} - \frac{1}{2} \right) = 0$$

um
$$\frac{\beta F_4}{N} = -[f_+(1 - \alpha_+)]$$

Theory describes conformation and charge state

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)

Sequence patterning regulates conformation and charge state

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)

Charge and conformation landscape may exhibit bistability

ο

о

Phosphorylation can harness charge and conformational fluctuation

Phillips, Muthukumar, Ghosh PNAS Nexus (2024)

Conclusion

• Hamiltonian based analytical theory can be useful to dissect different regulators of chain conformation

• Sequence based theory can help understand function

Acknowledgment

Jonathan HuiHui

Michael Phillips A

Austin Haider

Andrew Torres

Liliana Houston Kari Gaalswyk

Taylor Firman , Luke Sawle

Martin Gruebele, Hue Sun Chan, Dan Fisher, Muthukumar

National Science Foundation WHERE DISCOVERIES BEGIN

